Genotype by environment interaction for activity-based estrus traits in relation to production level for Danish Holstein.

J Dairy Sci

Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, PO Box 50, DK-8830 Tjele, Denmark.

Published: December 2016

The objective of this study was to investigate whether genotype by environment interaction exists for female fertility traits and production of energy-corrected milk at 70d in milk (ECM70). Fertility traits considered were the activity-based estrus traits interval from calving to first high activity (CFHA), duration of high activity episode (DHA), as an indicator for first estrus duration, and strength of high activity episode (SHA), as an indicator for first estrus strength. The physical activity traits were derived from electronic activity tags for 11,522 first-parity cows housed in 125 commercial dairy herds. Data were analyzed using a univariate random regression animal model (URRM), by regressing the phenotypic performance on the average herd ECM70 as an environmental gradient. Furthermore, the genetic correlations between CFHA and ECM70 as a function of production level were estimated using a bivariate random regression animal model (BRRM). For all traits, heterogeneity of additive genetic variances and heritability estimates was observed. The heritability estimate for CFHA decreased from 0.25 to 0.10 with increasing production level and the heritability estimate for ECM70 decreased from 0.35 to 0.15 with increasing production level using URRM. The genetic correlation of the same trait in low and high production levels was around 0.74 for CFHA and 0.80 for ECM70 using URRM, but when data were analyzed using the multiple-trait analysis (MT), genetic correlation estimates between low and high production levels were not significantly different from unity. Furthermore, the genetic correlation of SHA between low and high production level was 0.22 using URRM, but the corresponding correlation estimate had large standard error when data were analyzed using MT. The genetic correlation between CFHA and ECM70 as a function of production environment was weak but unfavorable and decreased slightly from 0.09 to 0.04 with increasing production level using BRRM. Moreover, the same trend was observed when the data were analyzed using MT where the genetic correlation between CFHA and ECM70 in the low production environment was 0.29 compared with -0.13 in the high production environment, but these estimates had large standard errors. In conclusion, regardless of the trait used, in relation to average herd ECM70 production, the results indicated no clear evidence of strong genotype by environment interaction that would cause significant re-ranking of sires between low and high production environments.

Download full-text PDF

Source
http://dx.doi.org/10.3168/jds.2016-11446DOI Listing

Publication Analysis

Top Keywords

production level
24
genetic correlation
20
high production
20
data analyzed
16
low high
16
production
14
genotype environment
12
environment interaction
12
high activity
12
cfha ecm70
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!