Glypican-3 (GPC3) might be used as new biomarker of liver cancer for the development of new diagnostic methods. The most commonly used methods for protein detection are based on natural enzymes, which are easily affected by environmental conditions and suffer from the rigorous preparation conditions. Thus, the development of new enzyme mimetics with high and stable catalytic activity is of great significance in diagnostic applications. In this paper, copper ions (Cu) was found to possess the peroxidase-like catalytic activity, which can catalyze HO-mediated oxidation of peroxidase substrate and obtain the oxidation product with color change. This catalytic activity is much more stable than other nanomaterials based peroxidase mimetics, and can significantly increase by increasing the concentration of HO. It is worth mentioning that the absorbance signal induced by 5 nM Cu can be easily detected. This Cu-catalyzed reaction can be also applied in the detection of GPC3 by using the anti-GPC3 antibody functionalized CuO NPs, which can release the Cu by dissolved in HCl solution. This method permits detection of as low as 0.26 pg mL GPC3. This sensitivity is about one or several magnitudes higher than that of ELISA or other peroxidase mimetics based methods. The high catalytic activity of Cu and the signal amplification process of CuO NPs into high amount of Cu also make this method more simple and effective.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2016.08.036 | DOI Listing |
Int J Biol Macromol
January 2025
Department of Life Sciences and Systems Biology, University of Torino, Italy.
A new gene coding for an iron-containing enzyme was identified in the genome of Acinetobacter radioresistens. Bioinformatics analysis allowed the assignment of the protein to DyP peroxidases, due to the presence of conserved residues involved in heme binding and catalysis. Moreover, Ar-DyP is located in an operon coding also for other enzymes involved in iron uptake and regulation.
View Article and Find Full Text PDFStructure
January 2025
Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA. Electronic address:
High-risk human papillomavirus E6 oncoprotein is a model system for the recognition and degradation of cellular p53 tumor suppressor protein. There remains a gap in the understanding of the ubiquitin transfer reaction, including placement of the E6AP catalytic HECT domain of the ligase concerning the p53 substrate and how E6 itself is protected from ubiquitination. We determined the cryoelectron microscopy (cryo-EM) structure of the E6AP/E6/p53 complex, related the structure to in vivo modeling of the tri-molecular complex, and identified structural interactions associated with activation of the ubiquitin ligase function.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China. Electronic address:
A series of core-shell In/H-Beta@Ce catalysts were synthesized by encapsulating In/H-Beta within an amorphous CeO shell and then evaluated for the selective catalytic reduction of NO by CH (CH-SCR) under challenging conditions with SO and HO. IB@Ce-2 achieved 57.7 % NO conversion at 625°C, representing a 23.
View Article and Find Full Text PDFSmall
January 2025
Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing, 400060, China.
Nanozyme-based colorimetric sensors are promising approaches for environmental monitoring, food safety, and medical diagnostics. However, developing novel nanozymes that exhibit high catalytic activity, good dispersion in aqueous solution, high sensitivity, selectivity, and stability is challenging. In this study, for the first time, single-atom iridium-doped carbon dot nanozymes (SA Ir-CDs) are synthesized via a simple in situ pyrolysis process.
View Article and Find Full Text PDFChem Rec
January 2025
Bioinspired & Biomimetic Inorganic Chemistry Laboratory, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala, 673601, India.
Direct methane to methanol conversion is a dream reaction in industrial chemistry, which takes inspiration from the biological methanol production catalysed by methane monooxygenase enzymes (MMOs). Over the years, extensive studies have been conducted on this topic by bioengineering the MMOs, and tailoring methods to isolate the MMOs in the active form. Similarly, remarkable achievements have been noted in other methane activation strategies such as the use of heterogeneous catalysts or molecular catalysts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!