Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Peak broadening in ion mobility (IM) is a relatively predictable process and abnormally broad peaks can be indicative of the presence of unresolved species. Here, we introduce a new ion mobility peak fitting (IM_FIT) software package for automated and systematic determination of traveling wave ion mobility (TWIM) unresolved species. To identify IM unresolved species, the IM_FIT software generates a trend line by plotting ions' mobility peak widths as a function of their arrival times. Utilizing user-defined thresholds, IM_FIT allows for automated and rapid detection of ions that deviate from the peak width trend line. To demonstrate the advantages of IM_FIT for automated detection of IM unresolved species, IM-mass spectrometry (IM-MS) data from a sample mixture containing polypropylene glycol and multiple peptides were analyzed. A total of 14 out of the 34 observed singly-charged IM peaks above 5% relative abundance (i.e., signal-to-noise ratios above ∼200) were tagged as potentially co-eluting ions by IM_FIT. Subsequently, the 14 IM peaks tagged as potentially unresolved (presumably, peaks corresponding to co-eluting compounds), were further analyzed by automated IM deconvolution (AIMD), liquid chromatography-IM-MS (LC-IM-MS), and/or ultra-high resolution mass spectrometry. Using the aforementioned techniques, more than 85% of the tagged IM peaks (12 out of 14) were confirmed to contain co-eluting ions. As an additional new finding, IM_FIT facilitated the discovery of an unexpected sequence-scrambled y-type fragment ion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2016.08.019 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!