The field of environmental forensics emerged in the 1980s as a consequence of legislative frameworks enacted to enable parties, either states or individuals, to seek compensation with regard to contamination or injury due to damage to the environment. This legal environment requires stringent record keeping and defendable data therefore analysis can sometimes be confined to data to be obtained from certified laboratories using a standard accredited analytical method. Many of these methods were developed to target specific compounds for risk assessment purposes and not for environmental forensics applications such as source identification or age dating which often require larger data sets. The determination of persistent organic pollutants (POPs) for environmental forensic applications requires methods that are selective but also cover a wide range of target analytes which can be identified and quantified without bias. POPs are used in a wide variety of applications such as flame retardants, fire suppressants, heat transfer agents, surfactants and pesticides mainly because of their chemical inertness and stability. They also include compounds such as dioxins that can be unintentionally produced from industrial activities. POPs are persistent in the environment, bioaccumulative and/or toxic and therefore require analytical methods that are sensitive enough to meet the low detection limits needed for the protection of the environment and human health. A variety of techniques, procedures and instruments can be used which are well suited for different scenarios. Optimised methods are important to ensure that analytes are quantitatively extracted, matrix coextractables and interferences are removed and instruments are used most effectively and efficiently. This can require deviation from standard methods which can open the data up to further scrutiny in the courtroom. However, when argued effectively and strict QA/QC procedures are followed the development and optimization of methods based on investigation specific scenarios has the potential to generate better quality and more useful data.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2016.08.027DOI Listing

Publication Analysis

Top Keywords

environmental forensics
12
determination persistent
8
persistent organic
8
organic pollutants
8
methods
6
data
5
review determination
4
environmental
4
pollutants environmental
4
forensics investigations
4

Similar Publications

Identification of plant-based spilled oils using direct analysis in real-time-time-of-flight mass spectrometry with hydrophobic paper sampling.

Environ Monit Assess

January 2025

Science and Technology Branch, Pacific Environmental Science Centre, Environment and Climate Change Canada, Pacific and Yukon Laboratory for Environmental Testing, North Vancouver, BC, Canada.

Spilled plant-based oils behave very differently in comparison to petroleum oils and require different clean-up measures. They do not evaporate, disperse, dissolve, or emulsify to a significant degree but can polymerize and form an impermeable cap on sediment, smothering benthic media and resulting in an immediate impact on the wildlife community. The current study explored the application of rapid up-to-date direct analysis in real time (DART) with high-resolution mass spectrometry for plant-based oil typing.

View Article and Find Full Text PDF

Using fingermark powders and lifters on pangolin scales for anti-poaching measures.

Forensic Sci Int

January 2025

King's Forensics, Department of Analytical, Environmental and Forensic Sciences, King's College London, 150 Stamford Street, London SE1 9NH, UK. Electronic address:

Wildlife forensics is a relatively underexplored field of science. It provides forensic evidence to support legal investigations involving wildlife crime, such as the trafficking and poaching of animals and/or their goods. The consequences of poaching are not just limited to a decline in animal welfare and include the spread of zoonotic disease, species, cultural and habitat loss, and injury of anti-poaching rangers.

View Article and Find Full Text PDF

This research was carried out to assess the concentrations of carbon monoxide (CO) and formaldehyde (HCHO) in Edo State, Southern Nigeria, using remote sensing data. A secondary data collection method was used for the assessment, and the levels of CO and HCHO were extracted annually from Google Earth Engine using information from Sentinel-5-P satellite data (COPERNISCUS/S5P/NRTI/L3_) and processed using ArcMap, Google Earth Engine, and Microsoft Excel to determine the levels of CO and HCHO in the study area from 2018 to 2023. The geometry of the study location is highlighted, saved and run, and a raster imagery file of the study area is generated after the task has been completed with a 'projection and extent' in the Geographic Tagged Image File Format (.

View Article and Find Full Text PDF

On the occurrence, behaviour, and fate of naphthenic acid fraction compounds in aquatic environments.

Sci Total Environ

January 2025

Department of Civil, Geological and Environmental Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, Saskatchewan S7N 5A9, Canada; University of Lethbridge, Office of the Vice President (Research), Lethbridge, Alberta, Canada. Electronic address:

Naphthenic acids and naphthenic acid fraction compounds (NAFCs) are associated with production of unconventional petroleum resources, especially the Athabasca Oil Sands of Alberta, Canada. This complex mixture of acidic organic compounds is toxic to a variety of taxa, and so represents an important environmental management challenge. Thus, there is clear motivation to better understand the occurrence and characteristics of NAFCs in aquatic environments, their chemical behaviour, and environmental fate.

View Article and Find Full Text PDF

Ocean alkalinity enhancement (OAE) based on enhanced weathering of olivine (EWO) is a promising marine carbon dioxide removal (mCDR) technique. Previous research primarily focuses on the toxicological effects of potentially toxic metals (PTMs) released from olivine. In this Perspective, we explore the overlooked impacts of EWO on environmental media in two scenarios: olivine applied to beaches/shallow continental shelves and offshore dispersion by vessels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!