This paper reports on an evaluation of the suitability of a novel sample collection approach, volumetric absorptive micro-sampling (VAMS), in the context of the determination of ultra-trace concentrations of prosthesis-related metals (Al, Ti, V, Co, Cr, Ni, Sr and Zr) in whole blood. In a first phase, a simple dilute-and-shoot approach (100-fold dilution) followed by tandem ICP - mass spectrometry (ICP-MS/MS) analysis was developed for the accurate and sensitive determination of the target elements. The ICP-MS/MS method relies on the use of mass shift reactions proceeding when pressurizing the collision/reaction cell (CRC) with CHF/He for dealing with spectral overlap. Limits of detection (LoDs) between 0.3 and 30 ng L were attained in a multi-element approach. The accuracy of the method was demonstrated via successful analysis of the reference materials Seronorm Whole Blood Levels 1 and 3, and real venous blood samples, spiked with the target elements at different concentration levels (5-50 μg L). Although the implementation of VAMS devices introduced contamination problems for Al, Cr and Ni, VAMS followed by ICP-MS/MS analysis shows potential for future real-life routine applications when assessing levels of Ti, V, Co, Sr and/or Zr.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2016.08.030 | DOI Listing |
Ecotoxicol Environ Saf
January 2025
College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China. Electronic address:
Soil pollution by microplastics (MPs) and cadmium (Cd) poses significant threats to agricultural production, yet their combined toxicity and underlying mechanisms remain poorly understood. Here, we examined the effects of three types of MPs-polyethylene (PE), polyvinyl chloride (PVC) and polypropylene (PP)-with particle sizes of 150 μm and 10 μm, in combination with Cd stress (5 mg/kg) on tomato (Solanum lycopersicum L.) growth.
View Article and Find Full Text PDFSci Rep
December 2024
Faculty of Mining and Geology, University of Belgrade, Đušina 7, Beograd, Serbia.
Talanta
December 2024
Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology, and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. Electronic address:
The differentiation of valence states plays a crucial role in determining the toxicity of chromium (Cr) in environmental samples. In this work, two modes of colorimetric and electrochemical analytical methods based on a fungus like porous CoS (FP CoS) nanosensor were developed for rapid, specific, and portable detection trace/ultra-trace chromium species (Cr(VI) and Cr(III)). The FP CoS exhibited peroxidase activity as a nanozyme for the colorimetric detection of Cr(VI), catalyzing the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to a blue oxidation product (oxTMB) in the presence of Cr(VI) instead of unstable HO as an oxidizer at room temperature over existing methods.
View Article and Find Full Text PDFTalanta
December 2024
Department of Applied Chemistry, Anhui University of Technology, Maanshan, Anhui, 243002, PR China. Electronic address:
The key to accurately identifying trace heavy metal elements is to achieve efficient sample introduction while shielding the interference of matrix components. Taking the electrolytic hydride generation (EHG) technology as an example, this paper explored the effects of cathode materials and structural factors on the electrosynthesis of hydrogen selenide (HSe), particularly on suppressing interference from coexisting components. Systematic electrochemical and spectroscopic tests show that the nickel-based electrode can promote the generation of HSe, while the multi-layer foam structure with large specific surface area, rich pores and weak gas evolution effect improves the yield and stability of electrosynthesis reaction.
View Article and Find Full Text PDFMikrochim Acta
December 2024
Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Shaanxi, 716000, China.
A novel nanobiosensor was constructed by in situ locating nanometer MnO particles with controllable size and morphology in a Zr-MOF substrate to serve as an electrochemical probe. The synergistic effect of the two components, Zr-MOFs with high specific surface area and compatibility as a carrier for MnO, resulted in improved electrochemical activity and excellent electrochemical identification performance for the MnO@Zr-MOF/GCE biosensor. Under optimized experimental conditions and using CV and DPV technology, the biosensor showed a wide linear detection range (2-200 μM), a low detection limit (2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!