The Posttraumatic Growth Inventory (PTGI) is frequently used to assess positive changes following a traumatic event. The aim of the study is to examine the factor structure and the latent mean invariance of PTGI. A sample of 205 (M age = 54.3, SD = 10.1) women diagnosed with breast cancer and 456 (M age = 34.9, SD = 12.5) adults who had experienced a range of adverse life events were recruited to complete the PTGI and a socio-demographic questionnaire. We use Confirmatory Factor Analysis (CFA) to test the factor-structure and multi-sample CFA to examine the invariance of the PTGI between the two groups. The goodness of fit for the five-factor model is satisfactory for breast cancer sample (χ2(175) = 396.265; CFI = .884; NIF = .813; RMSEA [90% CI] = .079 [.068, .089]), and good for non-clinical sample (χ2(172) = 574.329; CFI = .931; NIF = .905; RMSEA [90% CI] = .072 [.065, .078]). The results of multi-sample CFA show that the model fit indices of the unconstrained model are equal but the model that uses constrained factor loadings is not invariant across groups. The findings provide support for the original five-factor structure and for the multidimensional nature of posttraumatic growth (PTG). Regarding invariance between both samples, the factor structure of PTGI and other parameters (i.e., factor loadings, variances, and co-variances) are not invariant across the sample of breast cancer patients and the non-clinical sample.

Download full-text PDF

Source
http://dx.doi.org/10.1017/sjp.2016.65DOI Listing

Publication Analysis

Top Keywords

breast cancer
16
posttraumatic growth
12
factor structure
12
non-clinical sample
12
growth inventory
8
sample breast
8
cancer patients
8
patients non-clinical
8
invariance ptgi
8
multi-sample cfa
8

Similar Publications

Gene Polymorphisms in Greek Primary Breast Cancer Patients.

Front Biosci (Schol Ed)

December 2024

Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia.

Background: Breast cancer is a heterogeneous disease with distinct clinical subtypes, categorized by hormone receptor status, which exhibits different prognoses and requires personalized treatment approaches. These subtypes included luminal A and luminal B, which have different prognoses. Breast cancer development and progression involve many factors, including interferon-gamma ().

View Article and Find Full Text PDF

Objective: The current study aimed to develop an experimental approach for the direct co-culture of three-dimensional breast cancer cells using single-cell RNA sequencing (scRNA-seq).

Methods: The following four cell culture groups were established in the Matrigel matrix: the untreated Michigan Cancer Foundation (MCF)-7 cell culture group, the MCF-7 cell culture plus cisplatin group, the untreated co-culture group, and the cell co-culture plus cisplatin group. For cell co-culture, MCF-7 cells, human mammary fibroblasts, and human umbilical vein endothelial cells were mixed at a ratio of 1:1:1.

View Article and Find Full Text PDF

Clinical Relevance and Drug Modulation of PPAR Signaling Pathway in Triple-Negative Breast Cancer: A Comprehensive Analysis.

PPAR Res

December 2024

Department of Laboratory Medicine, The Sixth School of Clinical Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, China.

Triple-negative breast cancer (TNBC) is highly heterogeneous and poses a significant medical challenge due to limited treatment options and poor outcomes. Peroxisome proliferator-activated receptors (PPARs) play a crucial role in regulating metabolism and cell fate. While the association between PPAR signal and human cancers has been a topic of concern, its specific relationship with TNBC remains unclear.

View Article and Find Full Text PDF

Previous studies have demonstrated that many healthcare workers in low- and middle-income countries (LMICs) lack the appropriate training and knowledge to recognize and diagnose breast cancer at an early stage. As a result, women in LMICs are frequently diagnosed with late-stage breast cancer (Stage III/IV) with a poor prognosis. We hosted a 1-day breast cancer educational conference directed towards healthcare workers in Honduras.

View Article and Find Full Text PDF

Deep learning identification of novel autophagic protein-protein interactions and experimental validation of Beclin 2-Ubiquilin 1 axis in triple-negative breast cancer.

Oncol Res

December 2024

Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.

Background: Triple-negative breast cancer (TNBC), characterized by its lack of traditional hormone receptors and HER2, presents a significant challenge in oncology due to its poor response to conventional therapies. Autophagy is an important process for maintaining cellular homeostasis, and there are currently autophagy biomarkers that play an effective role in the clinical treatment of tumors. In contrast to targeting protein activity, intervention with protein-protein interaction (PPI) can avoid unrelated crosstalk and regulate the autophagy process with minimal interference pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!