Photoelectrochemical CO reduction activity of a hybrid photocathode, based on a Ru(II)-Re(I) supramolecular metal complex photocatalyst immobilized on a NiO electrode (NiO-RuRe), was confirmed in an aqueous electrolyte solution. Under half-reaction conditions, the NiO-RuRe photocathode generated CO with high selectivity, and its turnover number for CO formation reached 32 based on the amount of immobilized RuRe. A photoelectrochemical cell comprising a NiO-RuRe photocathode and a CoO/TaON photoanode showed activity for visible-light-driven CO reduction using water as a reductant to generate CO and O, with the assistance of an external electrical (0.3 V) and chemical (0.10 V) bias produced by a pH difference. This is the first example of a molecular and semiconductor photocatalyst hybrid-constructed photoelectrochemical cell for visible-light-driven CO reduction using water as a reductant.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.6b09212DOI Listing

Publication Analysis

Top Keywords

photoelectrochemical reduction
8
complex photocatalyst
8
coo/taon photoanode
8
nio-rure photocathode
8
photoelectrochemical cell
8
visible-light-driven reduction
8
reduction water
8
water reductant
8
photoelectrochemical
4
reduction coupled
4

Similar Publications

Zinc ferrite (ZnFeO, ZFO) has gained attention as a candidate material for photoelectrochemical water oxidation. However, champion devices have achieved photocurrents far below that predicted by its bandgap energy. Herein, strong optical interference is employed in compact ultrathin film (8-14 nm) Ti-doped ZFO films deposited on specular back reflectors to boost photoanode performance through enhanced light trapping, resulting in a roughly fourfold improvement in absorption as compared to films deposited on transparent substrates.

View Article and Find Full Text PDF

Photoelectrochemical (PEC) CO reduction using a photocathode is an attractive method for making valuable chemical products due to its simplicity and lower overpotential requirements. However, previous PEC processes have often been diffusion-limited leading to low production rates of the CO reduction reaction, due to inefficient gas diffusion through the liquid electrolyte to the catalyst surface, particularly at high current densities. In this study, a gas-permeable photocathode in a continuous flow PEC reactor is incorporated, which facilitates the direct supply of CO gas to the photocathode-electrolyte interface, unlike dark reaction-based flow reactors.

View Article and Find Full Text PDF

Robust nCuO modulated by defect engineering enhanced photoelectrochemical biosensor for the detection of miRNA-21.

Biosens Bioelectron

December 2024

National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, People's Republic of China. Electronic address:

Traditional p-type CuO (pCuO), valued for its tunable band gap and p-type conductivity, has been widely used in photoelectrochemical biosensors. However, its weak conductivity leads to unsatisfied photoelectrochemical signals and limits its use in in situ vulcanization reactions. We synthesized n-type CuO (nCuO) with abundant oxygen vacancies through a simple chemical reduction for the first time, which was applied as efficient photoactive material.

View Article and Find Full Text PDF

Protection Materials on III-V Semiconductors for Photoelectrochemical CO Reduction.

J Phys Chem C Nanomater Interfaces

December 2024

Department of Physics, Technical University of Denmark, Fysikvej 307, 2800 Kongens Lyngby, Denmark.

Article Synopsis
  • * A specific structure with 150 nm TiO, 8 nm TaO, and 150 nm copper nanocubes showed a faradaic efficiency of 24% under certain conditions when integrated into a photoelectrochemical flow reactor.
  • * Directly attaching copper nanocubes to just the TiO layer led to hydrogen production instead of CO reduction, and further studies indicate that the loss of selectivity is related to small copper particle redeposition without changes in the TiO's
View Article and Find Full Text PDF

Solar-Driven Hydrogen Peroxide Production via BiVO-Based Photocatalysts.

Adv Sci (Weinh)

December 2024

Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore.

Solar hydrogen peroxide (HO) production has garnered increased research interest owing to its safety, cost-effectiveness, environmental friendliness, and sustainability. The synthesis of HO relies mainly on renewable resources such as water, oxygen, and solar energy, resulting in minimal waste. Bismuth vanadate (BiVO) stands out among various oxide semiconductors for selective HO production under visible light via direct two-electron oxygen reduction reaction (ORR) and two-electron water oxidation reaction (WOR) pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!