Research on the fate of reduced organic nitrogen compounds in the atmosphere has gained momentum since the identification of their crucial role in particle nucleation and the scale up of carbon capture and storage technology which employs amine-based solvents. Reduced organic nitrogen compounds have strikingly different lifetimes against OH radicals, from hours for amines to days for amides to years for isocyanates, highlighting unique functional group reactivity. In this work, we use ab initio methods to investigate the gas-phase mechanisms governing the reactions of amines, amides, isocyanates and carbamates with OH radicals. We determine that N-H abstraction is only a viable mechanistic pathway for amines and we identify a reactive pathway in amides, the formyl C-H abstraction, not currently considered in structure-activity relationship (SAR) models. We then use our acquired mechanistic knowledge and tabulated literature experimental rate coefficients to calculate SAR factors for reduced organic nitrogen compounds. These proposed SAR factors are an improvement over existing SAR models because they predict the experimental rate coefficients of amines, amides, isocyanates, isothiocyanates, carbamates and thiocarbamates with OH radicals within a factor of 2, but more importantly because they are based on a sound fundamental mechanistic understanding of their reactivity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.6b03797DOI Listing

Publication Analysis

Top Keywords

reduced organic
16
organic nitrogen
16
nitrogen compounds
16
gas-phase mechanisms
8
amines amides
8
amides isocyanates
8
sar models
8
experimental rate
8
rate coefficients
8
sar factors
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!