An application of spectral domain optical coherence tomography (SD-OCT) was demonstrated for a fast industrial inspection of an optical thin film panel. An optical thin film sample similar to a liquid crystal display (LCD) panel was examined. Two identical SD-OCT systems were utilized for parallel scanning of a complete sample in half time. Dual OCT inspection heads were utilized for transverse (fast) scanning, while a stable linear motorized translational stage was used for lateral (slow) scanning. The cross-sectional and volumetric images of an optical thin film sample were acquired to detect the defects in glass and other layers that are difficult to observe using visual inspection methods. The rapid inspection enabled by this setup led to the early detection of product defects on the manufacturing line, resulting in a significant improvement in the quality assurance of industrial products.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5087387 | PMC |
http://dx.doi.org/10.3390/s16101598 | DOI Listing |
Langmuir
January 2025
Centre for Nano and Soft Matter Sciences, Shivanapura, Dasanapura Hobli, Bangalore 562162, India.
The textile industry is one of the main industries that benefited from the industrial revolution. Therefore, discharging of dyes from textile, paper, plastic, and rubber industries is inevitable. This colored wastewater prevents sunlight penetration and highly affects water sources.
View Article and Find Full Text PDFSmall
January 2025
Department of Microelectronics, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, 2628 CN, The Netherlands.
Miniaturization of next-generation active neural implants requires novel micro-packaging solutions that can maintain their long-term coating performance in the body. This work presents two thin-film coatings and evaluates their biostability and in vivo performance over a 7-month animal study. To evaluate the coatings on representative surfaces, two silicon microchips with different surface microtopography are used.
View Article and Find Full Text PDFACS Nano
January 2025
College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China.
Van der Waals (vdW) contact has been widely regarded as one of the most potential strategies for exploiting low-resistance metal-semiconductor junctions (MSJs) based on atomically thin transition-metal dichalcogenides (TMDs), but this method is still not efficient due to weak metal-TMD interfacial interactions. Therefore, an understanding of interfacial interactions between metals and TMDs is essential for achieving low-resistance contacts with weak Fermi level pinning (FLP). Herein, we report how the interfacial interactions between metals and TMDs affect the electrical contacts by considering more than 90 MSJs consisting of a semiconducting TMD channel and different types of metal electrodes, including bulk metals, MXenes, and metallic TMDs.
View Article and Find Full Text PDFNature
January 2025
Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
The integrated frequency comb generator based on Kerr parametric oscillation has led to chip-scale, gigahertz-spaced combs with new applications spanning hyperscale telecommunications, low-noise microwave synthesis, light detection and ranging, and astrophysical spectrometer calibration. Recent progress in lithium niobate (LiNbO) photonic integrated circuits (PICs) has resulted in chip-scale, electro-optic (EO) frequency combs, offering precise comb-line positioning and simple operation without relying on the formation of dissipative Kerr solitons. However, current integrated EO combs face limited spectral coverage due to the large microwave power required to drive the non-resonant capacitive electrodes and the strong intrinsic birefringence of LiNbO.
View Article and Find Full Text PDFNat Mater
January 2025
Department of Physics, Harvard University, Cambridge, MA, USA.
Atomically thin van der Waals (vdW) films provide a material platform for the epitaxial growth of quantum heterostructures. However, unlike the remote epitaxial growth of three-dimensional bulk crystals, the growth of two-dimensional material heterostructures across atomic layers has been limited due to the weak vdW interaction. Here we report the double-sided epitaxy of vdW layered materials through atomic membranes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!