Linker-switch approach towards new ATP binding site inhibitors of DNA gyrase B.

Eur J Med Chem

University of Ljubljana, Faculty of Pharmacy, Department of Medicinal Chemistry, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia. Electronic address:

Published: January 2017

AI Article Synopsis

Article Abstract

Due to increasing emergence of bacterial resistance, compounds with new mechanisms of action are of paramount importance. One of modestly researched therapeutic targets in the field of antibacterial discovery is DNA gyrase B. In the present work we synthesized a focused library of potential DNA gyrase B inhibitors composed of two key pharmacophoric moieties linked by three types of sp-rich linkers to obtain three structural classes of compounds. Using molecular docking, molecular dynamics and analysis of conserved waters in the binding site, we identified a favourable binding mode for piperidin-4-yl and 4-cyclohexyl pyrrole-2-carboxamides while predicting unfavourable interactions with the active site for piperazine pyrrole-2-carboxamides. Biological evaluation of prepared compounds on isolated enzyme DNA gyrase B confirmed our predictions and afforded multiple moderately potent inhibitors of DNA gyrase B. Namely trans-4-(4,5-dibromo-1H-pyrrole-2-carboxamide)cyclohexyl)glycine and 4-(4-(3,4-dichloro-5-methyl-1H-pyrrole-2-carboxamido)piperidin-1-yl)-4-oxobutanoic acid with an IC value of 16 and 0.5 μM respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2016.09.040DOI Listing

Publication Analysis

Top Keywords

dna gyrase
20
binding site
8
inhibitors dna
8
dna
5
gyrase
5
linker-switch approach
4
approach atp
4
atp binding
4
site inhibitors
4
gyrase increasing
4

Similar Publications

Lyophilized and Oven-Dried Extracts: Characterization and , , and Analyses.

Plants (Basel)

January 2025

Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan 45121, Mexico.

In this work, extracts from the pulp, peel, and seed of were obtained via lyophilization and oven drying. Bromatological analyses were performed to investigate variabilities in the nutritional content of fruits after nine post-harvest days. The phytochemical content of fruits was assessed by gas chromatography flame ionization detector (GC-FID), and their biological performance was studied using antibacterial and antioxidant assays (DPPH and ABTS) and toxicity models.

View Article and Find Full Text PDF

Background: In the era of resistance, the design and search for new "small" molecules with a narrow spectrum of activity that target a protein or enzyme specific to a certain bacterium with high selectivity and minimal side effects remains an urgent problem of medicinal chemistry. In this regard, we developed and successfully implemented a strategy for the search for new hybrid molecules, namely, the not broadly known [2-(3-R-1-[1,2,4]-triazol-5-yl)phenyl]amines. They can act as "building blocks" and allow for the introduction of certain structural motifs into the desired final products in order to enhance the antistaphylococcal effect.

View Article and Find Full Text PDF

The rise of antimicrobial resistance represents a significant global health threat, driven by the diminishing efficacy of existing antibiotics, a lack of novel antibacterials entering the market, and an over- or misuse of existing antibiotics, which accelerates the evolution of resistant bacterial strains. This review focuses on innovative therapies by highlighting 19 novel antibacterials in clinical development as of June 2024. These selected compounds are characterized by new chemical scaffolds, novel molecular targets, and/or unique mechanisms of action, which render their potential to break antimicrobial resistance particularly high.

View Article and Find Full Text PDF

The antibacterial efficacy of some newly developed bis- and C3-carboxylic moieties of fluoroquinolone-linked triazole conjugates was studied. Twenty compounds from two different series of triazoles were synthesized using click chemistry and evaluated for their antibacterial activity against a Gram-positive strain, (ATCC29212), and its clinical isolate and a Gram-negative bacterial strain, (ATCC25922), and its clinical isolate. Among the compounds, 7, 9a, 9d, 9i, 10(a-d), and 10i showed excellent activity with MIC values of up to 6.

View Article and Find Full Text PDF

Antimicrobial resistance is one of the major health threats of the modern world. Thus, new structural classes of antimicrobial compounds are needed in order to overcome existing resistance. Cystobactamids represent one such new compound class that inhibit the well-established target bacterial type II topoisomerases while exhibiting superior antibacterial and resistance-breaking properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!