A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Subcellular proteomics analysis of different stages of colorectal cancer cell lines. | LitMetric

Studying cell differentiation and transformation allows a better understanding of the mechanisms involved in the initiation and the evolution of cancer. The role of proteins which participate in these processes is dependent on their location within the cell. Determining the subcellular localization of proteins or the changes in localization is, therefore, paramount in elucidating their role. Using quantitative mass spectrometry, we characterized the protein expression and subcellular localization of nearly 5000 proteins from seven different colorectal cancer (CRC) cell lines, as well as normal colon fibroblasts and intestinal epithelial cells. This cellular characterization allowed the identification of colon cancer-associated proteins with differential expression patterns as well as deregulated protein networks and pathways. Indeed, our results demonstrate differential expression of proteins involved in cell adhesion, cytoskeleton, and transcription in colon cancer cells compared to normal colon-derived cells. Pathway analyses identified different cellular functions, including endocytosis and eIF2 signaling, whose deregulation correlates with mutations found in the different CRC phenotypes. Our results provide an unbiased, quantitative and high-throughput approach to measure changes in protein expression and subcellular protein locations in different CRC cell lines.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pmic.201600314DOI Listing

Publication Analysis

Top Keywords

cell lines
12
colorectal cancer
8
subcellular localization
8
protein expression
8
expression subcellular
8
crc cell
8
differential expression
8
cell
6
proteins
5
subcellular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!