A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Problem Features versus Algorithm Performance on Rugged Multiobjective Combinatorial Fitness Landscapes. | LitMetric

In this article, we attempt to understand and to contrast the impact of problem features on the performance of randomized search heuristics for black-box multiobjective combinatorial optimization problems. At first, we measure the performance of two conventional dominance-based approaches with unbounded archive on a benchmark of enumerable binary optimization problems with tunable ruggedness, objective space dimension, and objective correlation ([Formula: see text]MNK-landscapes). Precisely, we investigate the expected runtime required by a global evolutionary optimization algorithm with an ergodic variation operator (GSEMO) and by a neighborhood-based local search heuristic (PLS), to identify a ([Formula: see text]approximation of the Pareto set. Then, we define a number of problem features characterizing the fitness landscape, and we study their intercorrelation and their association with algorithm runtime on the benchmark instances. At last, with a mixed-effects multilinear regression we assess the individual and joint effect of problem features on the performance of both algorithms, within and across the instance classes defined by benchmark parameters. Our analysis reveals further insights into the importance of ruggedness and multimodality to characterize instance hardness for this family of multiobjective optimization problems and algorithms.

Download full-text PDF

Source
http://dx.doi.org/10.1162/EVCO_a_00193DOI Listing

Publication Analysis

Top Keywords

problem features
16
optimization problems
12
multiobjective combinatorial
8
features performance
8
problem
4
features versus
4
versus algorithm
4
performance
4
algorithm performance
4
performance rugged
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!