The advent of nanophotonic evanescent field trapping and transport platforms has permitted increasingly complex single molecule and single cell studies on-chip. Here, we present the next generation of nanophotonic Standing Wave Array Traps (nSWATs) representing a streamlined CMOS fabrication process and compact biocompatible design. These devices utilize silicon nitride (SiN) waveguides, operate with a biofriendly 1064 nm laser, allow for several watts of input power with minimal absorption and heating, and are protected by an anticorrosive layer for sustained on-chip microelectronics in aqueous salt buffers. In addition, due to SiN's negligible nonlinear effects, these devices can generate high stiffness traps while resolving subnanometer displacements for each trapped particle. In contrast to traditional table-top counterparts, the stiffness of each trap in an nSWAT device scales linearly with input power and is independent of the number of trapping centers. Through a unique integration of microcircuitry and photonics, the nSWAT can robustly trap, and controllably position, a large number of nanoparticles along the waveguide surface, operating in an all-optical, constant-force mode without need for active feedback. By reducing device fabrication cost, minimizing trapping laser specimen heating, increasing trapping force, and implementing commonly used trapping techniques, this new generation of nSWATs significantly advances the development of a high performance, low cost optical tweezers array laboratory on-chip.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5515237 | PMC |
http://dx.doi.org/10.1021/acs.nanolett.6b03470 | DOI Listing |
J Am Chem Soc
January 2025
Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
Understanding and effectively controlling molecular conformational changes are essential for developing responsive and dynamic molecular systems. Here, we report that an oriented external electric field (OEEF) is an effective catalyst for the cis-trans isomerization of stiff-stilbene, a key component of overcrowded alkene-based rotary motors. This reversible isomerization occurs under ambient conditions, is free from side reactions, and has been verified using ultraperformance liquid chromatography and UV-vis absorption spectroscopy.
View Article and Find Full Text PDFBMJ Open Gastroenterol
December 2024
Australian Centre for Health Services Innovation, Centre for Healthcare Transformation, School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, Kelvin Grove, Queensland, Australia
Objective: Non-alcoholic fatty liver disease (NAFLD) is estimated to affect a third of Australian adults, and its prevalence is predicted to rise, increasing the burden on the healthcare system. The LOCal Assessment and Triage Evaluation of Non-Alcoholic Fatty Liver Disease (LOCATE-NAFLD) trialled a community-based fibrosis assessment service using FibroScan to reduce the time to diagnosis of high-risk NAFLD and improve patient outcomes.
Methods: We conducted a 1:1 parallel randomised trial to compare two alternative models of care for NAFLD diagnosis and assessment.
Sensors (Basel)
January 2025
China Railway Seventh Group Co., Ltd., Zhengzhou 450016, China.
This paper investigates the use of the BOTDA (Brillouin Optical Time-Domain Analysis) technology to monitor a large-scale bored pile wall in the field. Distributed fiber optic sensors (DFOSs) were deployed to measure internal temperature and strain changes during cement grouting, hardening, and excavation-induced deformation of a secant pile wall. The study details the geological conditions and DFOS installation process.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Faculty of Mechanical Engineering, Poznan University of Technology, Pl. Marii Skłodowskiej-Curie 5, 60-965 Poznań, Poland.
A multilayer structure is a type of construction consisting of outer layers and a core, which is mainly characterized by high strength and specific stiffness, as well as the ability to dampen vibration and sound. This structure combines the high strength of traditional materials (mainly metals) and composites. Currently, sandwich structures in any configurations (types of core) are one of the main directions of technology development and research.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Industrial Engineering, University of Trento, 38123 Trento, Italy.
The metastable β-Ti21S alloy exhibits a lower elastic modulus than Ti-6Al-4V ELI while maintaining high mechanical strength and ductility. To address stress shielding, this study explores the integration of lattice structures within prosthetics, which is made possible through additive manufacturing. Continuous adhesion between the implant and bone is essential; therefore, auxetic bow-tie structures with a negative Poisson's ratio are proposed for regions under tensile stress, while Triply Periodic Minimal Surface (TPMS) structures with a positive Poisson's ratio are recommended for areas under compressive stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!