Background: A major challenge in using magnetic resonance temperature imaging (MRTI) to monitor focused ultrasound (FUS) applications is achieving high spatio-temporal resolution over a large field of view (FOV). This is important to accurately monitor all ultrasound (US) power depositions. Magnetic resonance (MR) subsampling in conjunction with thermal model-based reconstruction of the MRTI utilizing Pennes bioheat transfer equation (PBTE) is one promising approach. The thermal properties used in the thermal model are often estimated from a pre-treatment, low-power sonication.
Methods: In this proof-of-concept study we investigate the use of US simulations computed using the hybrid angular spectrum (HAS) method to estimate the US power deposition density Q, thereby avoiding the pre-treatment sonication and any potential tissue damage. MRTI reconstructions are performed using a thermal model-based reconstruction method called model predictive filtering (MPF). Experiments are performed in a homogeneous gelatin phantom and in a gelatin phantom with embedded plastic skull. MPF reconstructions are compared to separate sonications imaged with fully sampled data over a smaller FOV. Temperature root-mean-square errors (RMSE) and focal spot positions and shapes are evaluated.
Results: HAS simulations accurately predict the location of the focal spot (to within 1 mm) in both phantoms. Accurate temperature maps (RMSE below 1 °C), where the location of the focal spot agrees well with fully sampled "truth" (to within 1 mm), are also achieved in both phantoms.
Conclusions: HAS simulations can be used to accurately predict the focal spot location in homogeneous media and when focusing through an aberrating plastic skull. The HAS simulated power deposition (Q) patterns can be used in the MPF thermal model-based reconstruction to obtain accurate temperature maps with high spatio-temporal resolution over large FOVs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5032243 | PMC |
http://dx.doi.org/10.1186/s40349-016-0067-6 | DOI Listing |
Pathol Int
January 2025
Department of Pathology, Tohoku University Hospital, Sendai, Japan.
Fusobacterium nucleatum is implicated in esophageal cancer; however, its distribution in esophageal cancer tissues remains unknown. This study aimed to clarify the presence and distribution of F. nucleatum in esophageal cancer tissues using fluorescence in situ hybridization (FISH).
View Article and Find Full Text PDFLangmuir
January 2025
Information Device Science Laboratory, Division of Materials Science, Nara Institute of Science and Technology, Ikoma City, Nara 630-0192, Japan.
A localized conversion of aluminum into transparent aluminum oxide by droplet-scale anodization is demonstrated in this work. The anodized region can be contained and controlled on the basis of the electrowetting response of the droplet. A highly uniform and transparent anodized spot was achieved using an anodization voltage of 2 V for 10 min.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
We report a nonlinear terahertz (THz) detection device based on a metallic bull's-eye plasmonic antenna. The antenna, fabricated with femtosecond laser direct writing and deposited on a nonlinear gallium phosphide (GaP) crystal, focuses incoming THz waveforms within the sub-wavelength bull's eye region to locally enhance the THz field. Additionally, the plasmonic structure minimizes diffraction effects allowing a relatively long interaction length between the transmitted THz field and the co-propagating near-infrared gating pulse used in an electro-optic sampling configuration.
View Article and Find Full Text PDFCells Dev
January 2025
Tunicate Laboratory, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa, Japan.
Butterfly wing eyespots are developmentally determined at the early pupal stage, when prospective eyespot focal cells underneath the pupal cuticle focal spot function as eyespot organizers in the pupal wing tissue. Here, we performed light microscopy and transmission electron microscopy (TEM) to describe cellular structures of pupal wing tissue with an eyespot organizer immediately after pupation using the Blue Pansy butterfly Junonia orithya. The pupal forewing dorsal epidermis was a pseudostratified monolayer of vertically elongated epidermal cells.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. Electronic address:
Antibiotic resistance genes (ARGs) are markers of drug-resistant pathogens, monitoring them contributes to prevent resistance to drugs. The detection methods for ARGs including PCR and isothermal amplification are sensitive and selective. However, it may take several hours or cannot be used on spot.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!