Cortical dipole imaging has been developed to visualize brain electrical activity in high spatial resolution. It is necessary to solve an inverse problem to estimate the cortical dipole distribution from the scalp potentials. In the present study, the accuracy of cortical dipole imaging was improved by focusing on filtering property of the spatial inverse filter. We proposed an inverse filter that optimizes filtering property using a sigmoid function. The ability of the proposed method was compared with the traditional inverse techniques, such as Tikhonov regularization, truncated singular value decomposition (TSVD), and truncated total least squares (TTLS), in a computer simulation. The proposed method was applied to human experimental data of visual evoked potentials. As a result, the estimation accuracy was improved and the localized dipole distribution was obtained with less noise.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5021924 | PMC |
http://dx.doi.org/10.1155/2016/8404565 | DOI Listing |
Med Biol Eng Comput
January 2025
State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing, University, Chongqing, 400044, People's Republic of China.
Selecting channels for motor imagery (MI)-based brain-computer interface (BCI) systems can not only enhance the portability of the systems, but also improve the decoding performance. Hence, we propose a cross-domain-based channel selection (CDCS) approach, which effectively minimizes the number of EEG channels used while maintaining high accuracy in MI recognition. The EEG source imaging (ESI) technique is employed to map scalp EEG into the cortical source domain.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
CONICET-UNR, Laboratorio de Materiales (LEIM), Escuela de Ingeniería Eléctrica, Centro de Tecnología e Investigación Eléctrica (CETIE), Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Avda. Pellegrini 250, 2000 Rosario, Argentina.
The influence on the mobility of polypeptide chains caused by strain misfit due to molecular electric dipole distortions under applied electric fields up to 769 kV m, in cow cortical femur samples annealed at 373 K, 423 K, and 530 K, is determined. The behaviour of strain misfit as a function of the electric field strength is determined from a mean-field model based on the Eshelby theory. In addition, Friedel's model for describing the mobility of dislocations in continuum media has been modified to determine the interaction energy between electrically generated obstacles and the polypeptide chains.
View Article and Find Full Text PDFNeuroinformatics
January 2025
Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
The position and orientation of transcranial magnetic stimulation (TMS) coil, which we collectively refer to as coil placement, significantly affect both the assessment and modulation of cortical excitability. TMS electric field (E-field) simulation can be used to identify optimal coil placement. However, the present E-field simulation required a laborious segmentation and meshing procedure to determine optimal coil placement.
View Article and Find Full Text PDFHippocampus
January 2025
Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada.
The hypothesis that the hippocampal theta rhythm consists of inhibitory postsynaptic potentials (IPSPs) was critical for understanding the theta rhythm. The dominant views in the early 1980s were that intracellularly recorded theta consisted of excitatory postsynaptic potentials (EPSPs) with little participation by IPSPs, and that IPSPs generated a closed monopolar field in the hippocampus. I (Leung) conceived of a new model for generation of the hippocampal theta rhythm, with theta-rhythmic IPSPs as an essential component, and thus sought to reinvestigate the relation between theta and IPSPs quantitatively with intracellular and extracellular recordings.
View Article and Find Full Text PDFNeuroscience
November 2024
Department of Neuropsychiatry, Mie University Graduate School of Medicine, Tsu 514-8507, Japan. Electronic address:
A periodic sound with a fixed inter-stimulus interval elicits an auditory steady-state response (ASSR). An abrupt change in a continuous sound is known to affect the brain's ongoing neural oscillatory activity, but the underlying mechanism has not been fully clarified. We investigated whether and how an abrupt change in sound intensity affects the ASSR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!