Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We report on hot photoluminescence measurements that show the effects of acoustic phonon supercollision processes in the intensity of graphene light emission. We use a simple optical method to induce defects on single layer graphene in a controlled manner to study in detail the light emission dependence on the sample defect density. It is now well accepted that the graphene photoluminescence is due to black-body thermal emission from the quasi-equilibrium electrons at a temperature well above the lattice temperature. Our results show that as the sample defect density is increased the electrons relax energy more efficiently via acoustic phonon supercollision processes leading to lower electron temperatures and thus lower emission intensities. The calculated intensity decrease due to supercollision energy relaxation agrees well with the experimental data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0957-4484/27/44/445710 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!