Background: Altered myocardial energy metabolism has been linked to worsening of RV function in pulmonary arterial hypertension (PAH). The aim of this study was to evaluate RV glucose and fatty acid metabolism in vivo in a rat model of PAH using positron emission tomography (PET) and investigate the effects of Macitentan on RV substrate utilization.

Methods: PAH was induced in male Sprague-Dawley rats by a single subcutaneous injection of Sugen 5416 (20 mg/kg) followed by 3 weeks of hypoxia (10% oxygen). At week 5 post-injection, the PAH rats were randomized to Macitentan (30 mg/kg daily) treatment or no treatment. Substrate utilization was serially assessed 5 and 8 weeks post-injection with 2-[F]fluoro-2-deoxyglucose (FDG) and 14(R,S)-[18F]fluoro-6-thia-heptadecanoic acid (FTHA) PET for glucose and fatty acid metabolism respectively and correlated with in vivo functional measurements.

Results: PAH induction resulted in a 2.5-fold increase in RV FDG uptake (standardized uptake value (SUV) of normal control: 1.6 ± 0.4, week 5: 4.1 ± 1.9, week 8: 4.0 ± 1.6, P < 0.05 for all groups vs. control). RV FTHA showed twofold increased uptake at week 5 (SUV control: 1.50 ± 0.39, week 5: 3.06 ± 1.10, P = 0.03). Macitentan significantly decreased RV FDG uptake at 8 weeks (SUV: 2.5 ± 0.9, P = 0.04), associated with improved RV ejection fraction and reduced RV systolic pressure, while FTHA uptake was maintained.

Conclusion: PAH is associated with metabolic changes in the RV, characterized by a marked increase in FDG and FTHA uptake. Macitentan treatment reduced PAH severity and was associated with a decrease in RV FDG uptake and improved RV function.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12350-016-0663-4DOI Listing

Publication Analysis

Top Keywords

substrate utilization
8
rat model
8
pulmonary arterial
8
arterial hypertension
8
glucose fatty
8
fatty acid
8
acid metabolism
8
pah
5
effects endothelin
4
endothelin receptor
4

Similar Publications

The general control non-repressible 5 (GCN5)-related N-acetyltransferase (GNAT) SbzI, in the biosynthesis of the sulfonamide antibiotic altemicidin, catalyzes the transfer of the 2-sulfamoylacetyl (2-SA) moiety onto 6-azatetrahydroindane dinucleotide. While most GNAT superfamily utilize acyl-coenzyme A (acyl-CoA) as substrates, SbzI recognizes a carrier-protein (CP)-tethered 2-SA substrate. Moreover, SbzI is the only naturally occurring enzyme that catalyzes the direct incorporation of sulfonamide, a valuable pharmacophore in medicinal chemistry.

View Article and Find Full Text PDF

The mechanism of discriminative aminoacylation by isoleucyl-tRNA synthetase based on wobble nucleotide recognition.

Nat Commun

December 2024

State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.

The faithful charging of amino acids to cognate tRNAs by aminoacyl-tRNA synthetases (AARSs) determines the fidelity of protein translation. Isoleucyl-tRNA synthetase (IleRS) distinguishes tRNA from tRNA solely based on the nucleotide at wobble position (N34), and a single substitution at N34 could exchange the aminoacylation specificity between two tRNAs. Here, we report the structural and biochemical mechanism of N34 recognition-based tRNA discrimination by Saccharomyces cerevisiae IleRS (ScIleRS).

View Article and Find Full Text PDF

High-performance 2D electronic devices enabled by strong and tough two-dimensional polymer with ultra-low dielectric constant.

Nat Commun

December 2024

Department of Materials Science and NanoEngineering and the Rice Advanced Materials Institute, Rice University, Houston, TX, 77005, USA.

As the feature size of microelectronic circuits is scaling down to nanometer order, the increasing interconnect crosstalk, resistance-capacitance (RC) delay and power consumption can limit the chip performance and reliability. To address these challenges, new low-k dielectric (k < 2) materials need to be developed to replace current silicon dioxide (k = 3.9) or SiCOH, etc.

View Article and Find Full Text PDF

Response Surface Methodology for Optimization of Media Components for Production of Lipase from KUBT4.

Arch Razi Inst

June 2024

Department of Biotechnology and Microbiology, Karnatak University, Dharwad (Karnataka, India).

Lipases are triacylglycerol hydrolases with various potential applications because of their different physical properties. Most lipase producers are extracellular in nature and are created using solid-state fermentation and submerged fermentation methods. The fungal, mycelial, and yeast lipases are produced using various solid substrates through the solid-state fermentation method.

View Article and Find Full Text PDF

A comprehensive understanding of microbial community dynamics is fundamental to the advancement of environmental microbiology, human health, and biotechnology. Metaproteomics, defined as the analysis of all proteins present within a microbial community, provides insights into these complex systems. Microbial adaptation and activity depend to an important extent on newly synthesized proteins (nP), however, the distinction between nP and bulk proteins is challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!