Opposite effects of acute and chronic amphetamine on Nurr1 and NF-κB p65 in the rat ventral tegmental area.

Brain Res

Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile. Electronic address:

Published: December 2016

Dopamine neurons are overstimulated by drugs of abuse and suffer molecular alterations that lead to addiction behavior. Nurr1 is a transcription factor crucial for dopamine neurons survival and dopamine production, activating the transcription of key genes like tyrosine hydroxylase (TH). Interestingly, nuclear factor-kappa B (NF-κB) has emerged as a new Nurr1 partner in response to inflammatory stimulus. In this study we evaluated the effects of single and repeated amphetamine administration in the expression of Nurr1 and the NF-κB p65 subunit in the rat ventral tegmental area (VTA). We found that acute amphetamine treatment increased Nurr1, p65 and TH protein levels in the VTA. On the other hand, chronic amphetamine treatment decreased Nurr1 and p65 protein levels, but TH was unchanged. Mammalian reporter assays in cell lines showed that p65 represses Nurr1 transcriptional activity in an artificial promoter driven by Nurr1 response elements and in the native rat TH promoter. These results indicate that Nurr1 and NF-κB p65 factors are involved in the adaptive response of dopamine neurons to psychostimulants and that both transcription factors could be regulating Nurr1-dependent transactivation in the VTA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2016.09.031DOI Listing

Publication Analysis

Top Keywords

nurr1 nf-κb
12
nf-κb p65
12
dopamine neurons
12
nurr1
9
chronic amphetamine
8
rat ventral
8
ventral tegmental
8
tegmental area
8
amphetamine treatment
8
nurr1 p65
8

Similar Publications

JMJD3 deficiency disturbs dopamine biosynthesis in midbrain and aggravates chronic inflammatory pain.

Acta Neuropathol Commun

December 2024

Laboratory of Stem Cell Biology and Epigenetics, School of Basic Medical Sciences, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, China.

Midbrain dopamine (mDA) neurons participate in a wide range of brain functions through an intricate regulation of DA biosynthesis. The epigenetic factors and mechanisms in this process are not well understood. Here we report that histone demethylase JMJD3 is a critical regulator for DA biosynthesis in adult mouse mDA neurons.

View Article and Find Full Text PDF

Unlabelled: Despite a deep understanding of Parkinson's disease (PD) and levodopa-induced dyskinesia (LID) pathogenesis, current therapies are insufficient to effectively manage the progressive nature of PD or halt LID. Growing hypotheses suggested the NOD-like receptor 3 (NLRP3) inflammasome and orphan nuclear receptor-related 1 (Nurr1)/glycogen synthase kinase-3β (GSK-3β) and peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α)/sirtuin 3 (SIRT3) pathways as potential avenues for halting neuroinflammation and oxidative stress in PD.

Aims: This study investigated for the first time the neuroprotective effect of canagliflozin against PD and LID in rotenone-intoxicated rats, emphasizing the crosstalk among the NLRP3/caspase-1 cascade, PGC-1α/SIRT3 pathway, mammalian target of rapamycin (mTOR)/beclin-1, and Nurr1/β-catenin/GSK-3β pathways as possible treatment strategies in PD and LID.

View Article and Find Full Text PDF

Implication of Pyrethroid Neurotoxicity for Human Health: A Lesson from Animal Models.

Neurotox Res

December 2024

Department of Medical Laboratory Science, Faculty of Basic Medical Sciences, Adeleke University, Ede, Osun State, Nigeria.

Pyrethroids, synthetic insecticides used in pest management, pose health risks, particularly neurotoxic effects, with studies linking exposure to a neurodegenerative disorder. This review examines the neurotoxic mechanisms of pyrethroids analyzing literature from animal model studies. It identifies critical targets for neurotoxicity, including ion channels, oxidative stress, inflammation, neuronal cell loss, and mitochondrial dysfunction.

View Article and Find Full Text PDF

Nurr1 (NR4A2) is a member of nuclear receptor superfamily that regulates gene transcription in midbrain dopaminergic neurons and also inhibits nuclear factor-κB-mediated inflammatory responses in brain microglial cells. To date, various compounds have been reported to stimulate transcriptional activity of Nurr1 on neuronal genes, but their anti-inflammatory actions are poorly characterized. The present study examined the effects of three kinds of Nurr1 ligands, amodiaquine, 1,1-bis(3'-indolyl)-1-(p-chlorophenyl)-methane (C-DIM12) and 5-chloronaphthalen-1-amine (5-CNA), on inflammatory responses of microglial BV-2 cells.

View Article and Find Full Text PDF

Gene Therapy for Parkinson's Disease Using Midbrain Developmental Genes to Regulate Dopaminergic Neuronal Maintenance.

Int J Mol Sci

November 2024

Department of Premedicine, College of Medicine, Hanyang University, FTC12, 222 Wangsimni-ro, Seoul 04763, Republic of Korea.

Article Synopsis
  • Parkinson's disease (PD) is a major neurodegenerative condition marked by the loss of dopamine-producing neurons, leading to various disabling symptoms, yet conventional treatments fail to halt disease progression.* -
  • Gene therapy presents a promising alternative that could improve symptoms and have fewer side effects; early-phase clinical trials show that certain gene therapies safely boost dopamine levels.* -
  • Strategies that modify the disease's progression focus on protecting neurons and their environment, utilizing factors like Nurr1 and neurotrophic factors which may enhance the survival of dopamine neurons.*
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!