Disruption of the cell plasma membrane can occur due to mechanical damage, pore forming toxins, etc. Resealing or plasma membrane repair (PMR) is the emergency response required for cell survival. It is triggered by Ca entering through the disruption, causing organelles such as lysosomes located underneath the plasma membrane to fuse rapidly with the adjacent plasma membrane. We have recently identified some of the molecular traffic machinery that is involved in this vital process. Specifically, we showed that 2 members of the Rab family of small GTPases, Rab3a and Rab10, are essential for lysosome exocytosis and PMR in cells challenged with a bacterial toxin, streptolysin-O (SLO). Additionally, we showed that Rab3a regulates PMR via the interaction with 2 effectors, synaptotagmin-like protein 4a (Slp4-a) and nonmuscle myosin heavy chain IIA (NMHC IIA), the latter being identified for the first time as a Rab3a effector. This tripartite complex is essential for the positioning of the peripheral lysosomes responsible for PMR. In cells lacking any of the components of this tripartite complex, lysosomes were concentrated in the perinuclear region and absent in the periphery culminating with PMR inhibition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5997149 | PMC |
http://dx.doi.org/10.1080/21541248.2016.1235004 | DOI Listing |
Mol Neurobiol
January 2025
School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China.
Growing evidence suggests that plant compounds are emerging as a tremendous source for slowing the onset and progression of Alzheimer's disease (AD). Ursonic acid (UNA) is a naturally occurring pentacyclic triterpenoid with some hypoglycemic, anticancer, and antiinflammatory activities. However, the pharmacological effects of UNA on AD are still unknown.
View Article and Find Full Text PDFAnal Bioanal Chem
January 2025
Department of Chemistry - Biomedical Center, Analytical Chemistry and Neurochemistry, Uppsala University, Uppsala, Sweden.
Free fatty acids (FFAs) are important energy sources and significant for energy transport in the body. They also play a crucial role in cellular oxidative stress responses, following cell membrane depolarization, making accurate quantification of FFAs essential. This study presents a novel supercritical fluid chromatography-mass spectrometry (SFC-MS) method using selected ion recording in negative electrospray ionization mode, enabling rapid quantification of 31 FFAs within 6 min without derivatization.
View Article and Find Full Text PDFNat Methods
January 2025
Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
Inducible protein switches are currently limited for use in tissues and organisms because common inducers cannot be controlled with precision in space and time in optically dense settings. Here, we introduce a protein that can be reversibly toggled with a small change in temperature, a stimulus that is both penetrant and dynamic. This protein, called Melt (Membrane localization using temperature) oligomerizes and translocates to the plasma membrane when temperature is lowered.
View Article and Find Full Text PDFFunct Integr Genomics
January 2025
National Agri-Food and Biomanufacturing Institute, Sector-81, SAS Nagar, Knowledge City, Punjab, India.
Mitochondria, the cellular powerhouses, are pivotal to neuronal function and health, particularly through their role in regulating synaptic structure and function. Spine reprogramming, which underlies synapse development, depends heavily on mitochondrial dynamics-such as biogenesis, fission, fusion, and mitophagy as well as functions including ATP production, calcium (Ca) regulation, and retrograde signaling. Mitochondria supply the energy necessary for assisting synapse development and plasticity, while also regulating intracellular Ca homeostasis to prevent excitotoxicity and support synaptic neurotransmission.
View Article and Find Full Text PDFNat Chem
January 2025
Institute of Bioengineering, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
Protein catalysis and allostery require the atomic-level orchestration and motion of residues and ligand, solvent and protein effector molecules. However, the ability to design protein activity through precise protein-solvent cooperative interactions has not yet been demonstrated. Here we report the design of 14 membrane receptors that catalyse G protein nucleotide exchange through diverse engineered allosteric pathways mediated by cooperative networks of intraprotein, protein-ligand and -solvent molecule interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!