With the capability to inhibit the formation of amyloid β peptides (Aβ) fibril, dopamine (DA) and other catechol derivatives have been considered for the potential treatment of Alzheimer's disease (AD). Such treatment, however, remains debatable because of the diverse functions of Aβ and DA in AD pathology. Moreover, the complicated oxidation accompanying DA has caused the majority of the previous research to focus on the binding of DA oxides onto Aβ. The molecular mechanism by which Aβ interacts with the reduction state of DA, which is correlative with the brain function, should be urgently explored. By controlling rigorous anaerobic experimental conditions, this work investigated the molecular mechanism of the Aβ/DA interaction, and two binding sites were revealed. For the binding of DA, Tyrosine (Tyr) was identified as the strong binding site, and serine-asparagine-lysing (SNK(26-28)) segment was the weak binding segment. Furthermore, the Thioflavin T (THT) fluorescence confirmed DA's positive function of inhibiting Aβ aggregation through its weakly binding with SNK(26-28) segment. Meanwhile, 7-OHCCA fluorescence exhibited DA's negative function of enhancing OH generation through inhibiting the Aβ/Cu coordination. The viability tests of the neuroblastoma SH-SY5Y cells displayed that the coexistence of DA, Cu, and Aβ induced lower cell viability than free Cu, indicating the significant negative effect of excessive DA on AD progression. This research revealed the potential DA-induced damage in AD brain, which is significant for understanding the function of DA in AD neuropathology and for designing a DA-related therapeutic strategy for AD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jinorgbio.2016.09.007 | DOI Listing |
Tissue Cell
January 2025
Department of Human and Animal Physiology, Yerevan State University, Yerevan, 1 Alek Manukyan St, Yerevan 0025, Armenia; Research Institute of Biology, Yerevan State University, Yerevan, 1 Alek Manukyan St, Yerevan 0025, Armenia. Electronic address:
High altitude characterized by the low partial pressure of the oxygen is a life-threatening condition that contributes to the development of acute pulmonary edema and hypoxic lung injury. In this study, we aimed to investigate the contribution of some inflammatory and oxidative stress markers along with antioxidant system enzymes in the pathogenesis of HAPE (high-altitude pulmonary edema) formation. We incorporated the study on 42 male rats to unravel the role of mast cells (MCs) and TNF-α in the lung after the effect of acute hypobaric hypoxia.
View Article and Find Full Text PDFJ Med Chem
January 2025
Xi'an Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi'an 710021, China.
Multidrug-resistant (MDR) bacteria pose a global health threat, underscoring the need for new antibiotics. Lefamulin, the first novel-mechanism antibiotic approved by the FDA in decades, showcases pleuromutilins' promise due to low mutation frequency. However, their clinical use is limited by poor pharmacokinetics and organ toxicity.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland.
In the course of 266 nm nanosecond laser flash photolysis of carbazole (CBL) in acetonitrile, we discovered a new transient absorption band centered at 360 nm that has been heretofore unreported despite numerous reports on similar topics. To put some limits on possible transients responsible for this absorption band and thus to solve the mechanism of CBL photolysis, we employed the strategy of selectively blocking the CBL active sites by various modifications in the structure. This strategy was supported by the use of the solvent effect and triplet quenching by molecular oxygen.
View Article and Find Full Text PDFJ Craniofac Surg
November 2024
Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL.
Giant cell tumors (GCTs) are benign but locally aggressive bone neoplasms that primarily affect skeletally mature individuals. They are characterized by a tendency for recurrence and being associated with significant morbidity. Traditional treatment has focused on surgical resection; however, the role of medical therapies, such as Denosumab, a bone anti-resorptive drug, which has been Food and Drug Administration (FDA)-approved for unresectable GCTs since 2013, recently has gained prominence.
View Article and Find Full Text PDFJ Chromatogr Sci
January 2025
School of Pharmacy, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Road, Pudong New District, Shanghai 201318, China.
As a traditional Chinese medicine, Sanao decoction (SAD) has been used to treat chronic obstructive pulmonary disease (COPD) for multi-years. However, the potential mechanism and targets for its effects of SAD remain unknown. The 94 components of SAD were identified by UPLC-LTQ-Orbitrap MS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!