Real time observation and automated measurement of red blood cells agglutination inside a passive microfluidic biochip containing embedded reagents.

Biosens Bioelectron

Univ. Grenoble Alpes, INAC-SPRAM, F-38000 Grenoble, France; CEA, INAC-SPRAM, F-38000 Grenoble, France; CNRS, INAC-SPRAM, F-38000 Grenoble, France. Electronic address:

Published: July 2017

The process of agglutination is commonly used for the detection of biomarkers like proteins or viruses. The multiple bindings between micrometer sized particles, either latex beads or red blood cells (RBCs), create aggregates that are easily detectable and give qualitative information about the presence of the biomarkers. In most cases, the detection is made by simple naked-eye observation of agglutinates without any access to the kinetics of agglutination. In this study, we address the development of a real-time time observation of RBCs agglutination. Using ABO blood typing as a proof-of-concept, we developed i) an integrated biological protocol suitable for further use as point-of-care (POC) analysis and ii) two dedicated image processing algorithms for the real-time and quantitative measurement of agglutination. Anti-A or anti-B typing reagents were dried inside the microchannel of a passive microfluidic chip designed to enhance capillary flow. A blood drop deposit at the tip of the biochip established a simple biological protocol. In situ agglutination of autologous RBCs was achieved by means of embedded reagents and real time agglutination process was monitored by video recording. Using a training set of 24 experiments, two real-time indicators based on correlation and variance of gray levels were optimized and then further confirmed on a validation set. 100% correct discrimination between positive and negative agglutinations was performed within less than 2min by measuring real-time evolution of both correlation and variance indicators.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2016.09.068DOI Listing

Publication Analysis

Top Keywords

real time
8
time observation
8
red blood
8
blood cells
8
passive microfluidic
8
embedded reagents
8
biological protocol
8
correlation variance
8
agglutination
7
observation automated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!