A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A survey of neuroimmune changes in pregnant and postpartum female rats. | LitMetric

A survey of neuroimmune changes in pregnant and postpartum female rats.

Brain Behav Immun

Department of Neuroscience, The Ohio State University, 333 West 10th Avenue, Columbus, OH 43210, USA; Department of Psychology, The Ohio State University, 1835 Neil Avenue, Columbus, OH 43210, USA; Behavioral Neuroendocrinology Group, The Ohio State University, Columbus, OH 43210, USA. Electronic address:

Published: January 2017

AI Article Synopsis

  • During pregnancy and postpartum, the adult female brain shows significant changes in various cell types, particularly microglia, which are immune cells in the brain.
  • A study found that microglial density decreased in key brain areas related to behavior and neural plasticity during late pregnancy and early-mid postpartum, mostly affecting microglia with a thin, ramified structure.
  • The findings suggest that this reduction in microglia may be linked to decreased cell proliferation rather than increased cell death, along with changes in inflammatory cytokines, indicating an altered neuroimmune environment that supports the transition to motherhood.

Article Abstract

During pregnancy and the postpartum period, the adult female brain is remarkably plastic exhibiting modifications of neurons, astrocytes and oligodendrocytes. However, little is known about how microglia, the brain's innate immune cells, are altered during this time. In the current studies, microglial density, number and morphological phenotype were analyzed within multiple regions of the maternal brain that are known to show neural plasticity during the peripartum period and/or regulate peripartum behavioral changes. Our results show a significant reduction in microglial density during late pregnancy and the early-mid postpartum period in the basolateral amygdala, medial prefrontal cortex, nucleus accumbens shell and dorsal hippocampus. In addition, microglia numbers were reduced postpartum in all four brain regions, and these reductions occurred primarily in microglia with a thin, ramified morphology. Across the various measures, microglia in the motor cortex were unaffected by reproductive status. The peripartum decrease in microglia may be a consequence of reduced proliferation as there were fewer numbers of proliferating microglia, and no changes in apoptotic microglia, in the postpartum hippocampus. Finally, hippocampal concentrations of the cytokines interleukin (IL)-6 and IL-10 were increased postpartum. Together, these data point to a shift in the maternal neuroimmune environment during the peripartum period that could contribute to neural and behavioral plasticity occurring during the transition to motherhood.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbi.2016.09.026DOI Listing

Publication Analysis

Top Keywords

postpartum period
8
microglial density
8
peripartum period
8
microglia
7
postpartum
6
survey neuroimmune
4
neuroimmune changes
4
changes pregnant
4
pregnant postpartum
4
postpartum female
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!