Cardiac arrhythmia beat classification using DOST and PSO tuned SVM.

Comput Methods Programs Biomed

Department of Cardiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India. Electronic address:

Published: November 2016

Background And Objective: The increase in the number of deaths due to cardiovascular diseases (CVDs) has gained significant attention from the study of electrocardiogram (ECG) signals. These ECG signals are studied by the experienced cardiologist for accurate and proper diagnosis, but it becomes difficult and time-consuming for long-term recordings. Various signal processing techniques are studied to analyze the ECG signal, but they bear limitations due to the non-stationary behavior of ECG signals. Hence, this study aims to improve the classification accuracy rate and provide an automated diagnostic solution for the detection of cardiac arrhythmias.

Methods: The proposed methodology consists of four stages, i.e. filtering, R-peak detection, feature extraction and classification stages. In this study, Wavelet based approach is used to filter the raw ECG signal, whereas Pan-Tompkins algorithm is used for detecting the R-peak inside the ECG signal. In the feature extraction stage, discrete orthogonal Stockwell transform (DOST) approach is presented for an efficient time-frequency representation (i.e. morphological descriptors) of a time domain signal and retains the absolute phase information to distinguish the various non-stationary behavior ECG signals. Moreover, these morphological descriptors are further reduced in lower dimensional space by using principal component analysis and combined with the dynamic features (i.e based on RR-interval of the ECG signals) of the input signal. This combination of two different kinds of descriptors represents each feature set of an input signal that is utilized for classification into subsequent categories by employing PSO tuned support vector machines (SVM).

Results: The proposed methodology is validated on the baseline MIT-BIH arrhythmia database and evaluated under two assessment schemes, yielding an improved overall accuracy of 99.18% for sixteen classes in the category-based and 89.10% for five classes (mapped according to AAMI standard) in the patient-based assessment scheme respectively to the state-of-art diagnosis. The results reported are further compared to the existing methodologies in literature.

Conclusions: The proposed feature representation of cardiac signals based on symmetrical features along with PSO based optimization technique for the SVM classifier reported an improved classification accuracy in both the assessment schemes evaluated on the benchmark MIT-BIH arrhythmia database and hence can be utilized for automated computer-aided diagnosis of cardiac arrhythmia beats.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmpb.2016.08.016DOI Listing

Publication Analysis

Top Keywords

ecg signals
20
ecg signal
12
cardiac arrhythmia
8
pso tuned
8
ecg
8
non-stationary behavior
8
behavior ecg
8
classification accuracy
8
proposed methodology
8
feature extraction
8

Similar Publications

Introduction: The risk of mortality associated with cardiac arrhythmias is considerable, and their diagnosis presents significant challenges, often resulting in misdiagnosis. This situation highlights the necessity for an automated, efficient, and real-time detection method aimed at enhancing diagnostic accuracy and improving patient outcomes.

Methods: The present study is centered on the development of a portable deep learning model for the detection of arrhythmias via electrocardiogram (ECG) signals, referred to as CardioAttentionNet (CANet).

View Article and Find Full Text PDF

ROBUST OUTER VOLUME SUBTRACTION WITH DEEP LEARNING GHOSTING DETECTION FOR HIGHLY-ACCELERATED REAL-TIME DYNAMIC MRI.

Proc IEEE Int Symp Biomed Imaging

May 2024

Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA.

Real-time dynamic MRI is important for visualizing time-varying processes in several applications, including cardiac imaging, where it enables free-breathing images of the beating heart without ECG gating. However, current real-time MRI techniques commonly face challenges in achieving the required spatio-temporal resolutions due to limited acceleration rates. In this study, we propose a deep learning (DL) technique for improving the estimation of stationary outer-volume signal from shifted time-interleaved undersampling patterns.

View Article and Find Full Text PDF

Background: Deep-learning applications in cardiology typically perform trivial binary classification and are able to discriminate between subjects affected or not affected by a specific cardiac disease. However, this working scenario is very different from the real one, where clinicians are required to recognize the occurrence of one cardiac disease among the several possible ones, performing a multiclass classification. The present work aims to create a new interpretable deep-learning tool able to perform a multiclass classification and, thus, discriminate among several different cardiac diseases.

View Article and Find Full Text PDF

Atrial fibrillation (AF) is recognized as a developing global epidemic responsible for a significant burden of morbidity and mortality. To counter this public health crisis, the advancement of artificial intelligence (AI)-aided tools and methodologies for the effective detection and monitoring of AF is becoming increasingly apparent. A unified strategy from the international research community is essential to develop effective intelligent tools and technologies to support the health professionals for effective surveillance and defense against AF.

View Article and Find Full Text PDF

Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by immune dysregulation and excessive cytokine production. This study aimed to explore the potential of Camellia sinensis L. water extract (CSE) as a treatment for AD by the impact of CSE on inflammatory responses in keratinocytes, particularly concerning the production of inflammatory cytokines and the modulation of signaling pathways relevant to AD pathogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!