An unambiguous nomenclature is proposed for the twenty-eight-member LOB domain transcription factor family in Brachypodium . Expression analysis provides unique transcript patterns that are characteristic of a wide range of organs and plant parts. LOB (lateral organ boundaries)-domain proteins define a family of plant-specific transcription factors involved in developmental processes from embryogenesis to seed production. They play a crucial role in shaping the plant architecture through coordinating cell fate at meristem to organ boundaries. Despite their high potential importance, our knowledge of them is limited, especially in the case of monocots. In this study, we characterized LOB domain protein coding genes (LBDs) of Brachypodium distachyon, a model plant for grasses, and present their phylogenetic relationships and an overall spatial expression study. In the Brachypodium genome database, 28 LBDs were found and then classified based on the presence of highly conserved LOB domain motif. Their transcript amounts were measured via quantitative real-time RT-PCR in 37 different plant parts from root tip to generative organs. Comprehensive phylogenetic analysis suggests that there are neither Brachypodium- nor monocot-specific lineages among LBDs, but there are differences in terms of complexity of subclasses between monocots and dicots. Although LBDs in Brachypodium have wide variation of tissue-specific expression and relative transcript levels, overall expression patterns show similarity to their counterparts in other species. The varying transcript profiles we observed support the hypothesis that Brachypodium LBDs have diverse but conserved functions in plant organogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00299-016-2057-0DOI Listing

Publication Analysis

Top Keywords

lob domain
12
family brachypodium
8
plant parts
8
lbds brachypodium
8
brachypodium
6
plant
5
lbds
5
characterization lbd
4
lbd gene
4
gene family
4

Similar Publications

Introduction: AS2/LOB genes, a class of transcription factors ubiquitously existing in plants, are vital for plant growth, development, and stress tolerance. Despite the availability of the physic nut genome, information regarding the expression profiles and evolutionary histories of its AS2/LOB genes remains scarce.

Methods: An elaborate exploration of the AS2/LOB gene family was conducted, including phylogeny, exon-intron structure, chromosomal location, conserved domain characteristics, conserved motifs, promoter cis-acting elements, protein interaction, and expression profiles under normal growth and abiotic stress conditions.

View Article and Find Full Text PDF

Soil salinization is a significant environmental stress factor, threatening global agricultural yield and ecological security. Plants must effectively cope with the adverse effects of salt stress on survival and successful reproduction. Lateral Organ Boundaries (LOB) Domain (LBD) genes, a gene family encoding plant-specific transcription factors (TFs), play important roles in plant growth and development.

View Article and Find Full Text PDF

Cuttage is the main propagation method of tea plant cultivars in China. However, some tea softwood cuttings just form an expanded and loose callus at the base, without adventitious root (AR) formation during the propagation period. Meanwhile, exogenous auxin could promote the AR formation of tea plant cuttings, but the regulation mechanism has not yet explained clearly.

View Article and Find Full Text PDF

The LOB domain protein, a novel transcription factor with multiple functions: A review.

Plant Physiol Biochem

September 2024

Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, 570311, China. Electronic address:

The LATERAL ORGAN BOUNDARIES DOMAIN (LBD) protein, named for its LATERAL ORGAN BOUNDARIES (LOB) domain, is a member of a class of specific transcription factors commonly found in plants and is absent from all other groups of organisms. LBD TFs have been systematically identified in about 35 plant species and are involved in regulating various aspects of plant growth and development. However, research on the signaling network and regulatory functions of LBD TFs is insufficient, and only a few members have been studied.

View Article and Find Full Text PDF

Impact of trypsin on cell cytoplasm during detachment of cells studied by terahertz sensing.

Biophys J

August 2024

LOB, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, France. Electronic address:

Trypsin is a very common enzyme used in cell culture to harvest cells by cleaving the proteins responsible for cell adhesion. However, trypsin also induces undesirable effects on cells, such as altering membrane proteins and the cytoskeleton, changing the composition of the cytoplasm and the cell volume, and even leading to cell death when used improperly. Using attenuated total reflection in the terahertz domain, confocal microscopy, and the propidium iodide test, we quantified in real time the change in cytoplasmic content induced by trypsin proteolysis on Madin-Darby canine kidney epithelial cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!