We previously demonstrated that the sodium/hydrogen exchanger NHA2, also known as NHEDC2 or SLC9B2, is critical for insulin secretion by β-cells. To gain more insights into the role of NHA2 on systemic glucose homeostasis, we studied the impact of loss of NHA2 during the physiological aging process and in the setting of diet-induced obesity. While glucose tolerance was normal at 2 months of age, NHA2 KO mice displayed a significant glucose intolerance at 5 and 12 months of age, respectively. An obesogenic high fat diet further exacerbated the glucose intolerance of NHA2 KO mice. Insulin levels remained similar in NHA2 KO and WT mice during aging and high fat diet, but fasting insulin/glucose ratios were significantly lower in NHA2 KO mice. Peripheral insulin sensitivity, measured by insulin tolerance tests and hyperinsulinemic euglycemic clamps, was unaffected by loss of NHA2 during aging and high fat diet. High fat diet diminished insulin secretion capacity in both WT and NHA2 KO islets and reduced expression of NHA2 in WT islets. In contrast, aging was characterized by a gradual increase of NHA2 expression in islets, paralleled by an increasing difference in insulin secretion between WT and NHA2 KO islets. In summary, our results demonstrate that loss of the sodium/hydrogen exchanger NHA2 exacerbates obesity- and aging-induced glucose intolerance in mice. Furthermore, our data reveal a close link between NHA2 expression and insulin secretion capacity in islets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5042380PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163568PLOS

Publication Analysis

Top Keywords

glucose intolerance
16
insulin secretion
16
nha2 mice
16
high fat
16
fat diet
16
nha2
15
sodium/hydrogen exchanger
12
exchanger nha2
12
nha2 islets
12
loss sodium/hydrogen
8

Similar Publications

Obesity-induced muscle alterations, such as inflammation, metabolic dysregulation, and myosteatosis, lead to a decline in muscle mass and function, often resulting in sarcopenic obesity. Currently, there are no definitive treatments for sarcopenic obesity beyond lifestyle changes and dietary supplementation. Feruloylacetone (FER), a thermal degradation product of curcumin, and its analog demethoxyferuloylacetone (DFER), derived from the thermal degradation of bisdemethoxycurcumin, have shown potential antiobesity effects in previous studies.

View Article and Find Full Text PDF

Weight cycling exacerbates glucose intolerance and hepatic triglyceride storage in mice with a history of chronic high fat diet exposure.

J Transl Med

January 2025

Research Unit NeuroBiology of Diabetes, Helmholtz Munich, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.

Background: Obese subjects undergoing weight loss often fear the Yoyo dieting effect, which involves regaining or even surpassing their initial weight. To date, our understanding of such long-term obesity and weight cycling effects is still limited and often based on only short-term murine weight gain and loss studies. This study aimed to investigate the long-term impacts of weight cycling on glycemic control and metabolic health, focusing on adipose tissue, liver, and hypothalamus.

View Article and Find Full Text PDF

Transcriptional regulation of adipocyte lipolysis by IRF2BP2.

Sci Adv

January 2025

Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Article Synopsis
  • Adipocyte lipolysis plays a crucial role in regulating overall energy levels and metabolic balance, primarily controlled by specific enzymes and their modifications.
  • The study identifies IRF2BP2 as a transcriptional repressor that, when deleted, boosts lipolysis in human adipocytes without altering glucose uptake, while its overexpression has the opposite effect.
  • The research further reveals that the deletion of IRF2BP2 in mice leads to increased lipolysis and inflammation in adipose tissue, suggesting potential strategies for targeting lipolysis in metabolic disease treatments.
View Article and Find Full Text PDF

Background: About two-thirds of those with Alzheimer's disease (AD) are women, most of whom are post-menopausal. Menopause accelerates the risk for dementia by increasing the risk for metabolic, cardiovascular, and cerebrovascular diseases. Mid-life metabolic disease (e.

View Article and Find Full Text PDF

Pantothenate kinase 4 controls skeletal muscle substrate metabolism.

Nat Commun

January 2025

Department of Molecular Physiology of Exercise and Nutrition, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Nuthetal, Germany.

Article Synopsis
  • Metabolic flexibility in skeletal muscle is crucial for healthy glucose and lipid metabolism, and its dysfunction can lead to metabolic diseases.
  • Exercise improves metabolic flexibility and helps identify mechanisms that support metabolic health.
  • The study reveals that pantothenate kinase 4 (PanK4) is vital for muscle metabolism, as its deletion disrupts fatty acid oxidation and elevates harmful acetyl-CoA levels, which lead to glucose intolerance, while increasing PanK4 enhances glucose uptake and lowers acetyl-CoA.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!