Basic Signaling in Cardiac Fibroblasts.

J Cell Physiol

Laboratoire Signalisation et Transports Ioniques Membranaires (STIM), Université de Poitiers, CNRS, Poitiers, France.

Published: April 2017

Cardiac fibroblasts are commonly known as supporting cells of the cardiac network and exert many essential functions that are fundamental for normal cardiac growth as well as for cardiac remodeling process during pathological conditions. This review focuses on the roles of cardiac fibroblasts in the formation and regulation of the extracellular matrix components, and in maintaining structural, biochemical and mechanical properties of the heart. Additionally, though considered as non-excitable cells, we review the functional expression in cardiac fibroblasts of a wide variety of transmembrane ion channels which activity may contribute to key regulation of cardiac physiological processes. All together, cardiac fibroblasts which actively participate to fundamental regulation of cardiac physiology and physiopathology processes may represent pertinent targets for pharmacological approaches of cardiac diseases and lead to new tracks of therapeutic strategies. J. Cell. Physiol. 232: 725-730, 2017. © 2016 Wiley Periodicals, Inc.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.25624DOI Listing

Publication Analysis

Top Keywords

cardiac fibroblasts
20
cardiac
11
regulation cardiac
8
fibroblasts
5
basic signaling
4
signaling cardiac
4
fibroblasts cardiac
4
fibroblasts commonly
4
commonly supporting
4
supporting cells
4

Similar Publications

Decoding aging in the heart via single cell dual omics of non-cardiomyocytes.

iScience

December 2024

Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA.

To understand heart aging at the single-cell level, we employed single-cell dual omics (scRNA-seq and scATAC-seq) in profiling non-myocytes (non-CMs) from young, middle-aged, and elderly mice. Non-CMs, vital in heart development, physiology, and pathology, are understudied compared to cardiomyocytes. Our analysis revealed aging response heterogeneity and its dynamics over time.

View Article and Find Full Text PDF

Background: Human interleukin (IL)-37 is a constituent of the IL-1 family with potent anti-inflammatory and immunosuppressive attributes. It has been demonstrated extensive beneficial effects on various diseases; however, its role in the pathogenesis of diabetic cardiomyopathy (DCM) remains unclear.

Methods: , DCM mouse model was established with streptozotocin injection and a high-fat diet in WT and cardiac fibroblasts (CFs) specific hIL-37b overexpression mice (IL-37-Tg).

View Article and Find Full Text PDF

Aneurysm Is Restricted by CD34 Cell-Formed Fibrous Collars Through the PDGFRb-PI3K Axis.

Adv Sci (Weinh)

December 2024

Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.

Aortic aneurysm is a life-threatening disease caused by progressive dilation of the aorta and weakened aortic walls. Its pathogenesis involves an imbalance between connective tissue repair and degradation. CD34 cells comprise a heterogeneous population that exhibits stem cell and progenitor cell properties.

View Article and Find Full Text PDF

Objective: To explore the influence of SALL4 in cardiac fibroblasts on the progression of myocardial infarction.

Methods: Analysis of genes specifically expressed in myocardial infarction by bioinformatics methods; The impact of SALL4 on myocardial infarction was assessed using mouse ultrasound experiments and Masson staining; The effect of SALL4 on the expression levels of collagen-I and collagen-III in myocardial tissue was examined by immunohistochemical staining; The migration ability of cardiac fibroblasts was evaluated using a Transwell assay; The proliferative ability of cardiac fibroblasts was tested using a CCK-8 assay; The relative fluorescence intensity of α-SMA and CTGF in cardiac fibroblasts were checked through immunofluorescence staining experiment; The expression of SALL4, DOT1L, H3K79me2, P53, SHP2, YAP, nucleus-YAP, collagen-I, α-SMA, CTGF, and PAI-1 in myocardial tissues or cardiac fibroblasts was detected using western blot analysis.

Results: SALL4-specific high expression in myocardial infarction; SALL4 intensified the alterations in the heart structure of mice with myocardial infarction and worsened the fibrosis of myocardial infarction; SALL4 also promoted the expression of SALL4, DOT1L, H3K79me2, P53, SHP2, YAP, nucleus-YAP, collagen-I, collagen-III, α-SMA, CTGF, and PAI-1 in myocardial infarction tissues and cardiac fibroblasts; Subsequently, SALL4 could enhance the immunofluorescence intensity of α-SMA and CTGF; Moreover, SALL4 could promote the proliferation and migration of cardiac fibroblasts.

View Article and Find Full Text PDF

Sodium-glucose co-transport protein 2 (SGLT2) inhibitors, a novel category of oral hypoglycemic agents, offer a promising outlook for individuals experiencing heart failure with reduced ejection fraction. Evidence is emerging that highlights their potential in alleviating myocardial fibrosis and oxidative stress. However, the precise mechanisms through which SGLT2 inhibitors influence myocardial fibrosis induced by angiotensin II (Ang II) or transforming growth factor-β1 (TGF-β1) are not fully understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!