Biaxial Properties of the Left and Right Pulmonary Arteries in a Monocrotaline Rat Animal Model of Pulmonary Arterial Hypertension.

J Biomech Eng

Assistant Professor Department of Bioengineering, University of Illinois at Chicago, 851 S Morgan Street, SEO 208, Chicago, IL 60607 e-mail:

Published: November 2016

In a monocrotaline (MCT) induced-pulmonary arterial hypertension (PAH) rat animal model, the dynamic stress-strain relation was investigated in the circumferential and axial directions using a linear elastic response model within the quasi-linear viscoelasticity theory framework. Right and left pulmonary arterial segments (RPA and LPA) were mechanically tested in a tubular biaxial device at the early stage (1 week post-MCT treatment) and at the advanced stage of the disease (4 weeks post-MCT treatment). The vessels were tested circumferentially at the in vivo axial length with matching in vivo measured pressure ranges. Subsequently, the vessels were tested axially at the mean pulmonary arterial pressure by stretching them from in vivo plus 5% of their length. Parameter estimation showed that the LPA and RPA remodel at different rates: axially, both vessels decreased in Young's modulus at the early stage of the disease, and increased at the advanced disease stage. Circumferentially, the Young's modulus increased in advanced PAH, but it was only significant in the RPA. The damping properties also changed in PAH; in the LPA relaxation times decreased continuously as the disease progressed, while in the RPA they initially increased and then decreased. Our modeling efforts were corroborated by the restructuring organization of the fibers imaged under multiphoton microscopy, where the collagen fibers become strongly aligned to the 45 deg angle in the RPA from an uncrimped and randomly organized state. Additionally, collagen content increased almost 10% in the RPA from the placebo to advanced PAH.

Download full-text PDF

Source
http://dx.doi.org/10.1115/1.4034826DOI Listing

Publication Analysis

Top Keywords

pulmonary arterial
12
left pulmonary
8
rat animal
8
animal model
8
arterial hypertension
8
early stage
8
post-mct treatment
8
stage disease
8
vessels tested
8
young's modulus
8

Similar Publications

Aneurysmal rupture in microscopic polyangiitis: a case-based review.

Clin Rheumatol

January 2025

Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan.

Microscopic polyangiitis (MPA) affects small and medium vessel, which sometimes leads to arterial aneurysms. In English database, only 15 reports refer to ruptured aneurysms in MPA. We experienced a fatal case with MPA who developed multiple visceral aneurysms, resulting in rupture of the hepatic aneurysm.

View Article and Find Full Text PDF

Location of Care Delivery for Pulmonary Arterial Hypertension in the United States.

Am J Respir Crit Care Med

January 2025

University of Utah, Division of Cardiovascular Medicine, Department of Medicine, Salt Lake City, Utah, United States.

Rationale: Guidelines recommend patients with pulmonary arterial hypertension (PAH) be referred to pulmonary hypertension (PH) centers, but little is known about where care is actually delivered in the United States (US).

Objectives: To use prescription patterns to estimate the proportion of PAH care delivered at US PH centers and explore factors associated with location of care.

Methods: This retrospective study analyzed claims from the Komodo database in adults who received ≥1 PAH prescription between March 2021 and February 2022.

View Article and Find Full Text PDF

Patent ductus arteriosus (PDA) stenting is a vital intervention for neonates with ductal-dependent blood flow, offering an attractive alternative to surgical shunt placement. Despite its benefits, the procedure poses risks such as ductal spasm, branch pulmonary artery compromise, and pseudoaneurysm formation. This report presents two complex neonatal cases with distinct outcomes.

View Article and Find Full Text PDF

Aims: Left ventricular (LV) diastolic dysfunction and heart failure with preserved ejection fraction (HFpEF) are common cardiac complications of patients with systemic sclerosis (SSc). Exercise stress echocardiography is often used in symptomatic patients with SSc to detect abnormal increases in pulmonary pressures during exercise, but the pathophysiologic and prognostic significance of exercise stress echocardiography to assess the presence of HFpEF in these patients is unclear.

Methods And Results: Patients with SSc (n=140) underwent ergometry exercise stress echocardiography with simultaneous expired gas analysis.

View Article and Find Full Text PDF

Aims To evaluate the utility of unenhanced spectral imaging, electron density (ED) and overlay electron density (OED) images for assessing pulmonary embolisms in patients with suspected or confirmed acute pulmonary embolism (APE). Background Multiple spectral images can be extrapolated from spectral detector CT (SDCT), ED and OED images. ED and OED images are highly sensitive to moisture-rich tissues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!