Background: The ligaments in coherence with the capsule of the hip joint are known to contribute to hip stability. Nevertheless, the contribution of the mechanical properties of the ligaments and gender- or side-specific differences are still not completely clear. To date, comparisons of the hip capsule ligaments to other tissues stabilizing the pelvis and hip joint, e.g. the iliotibial tract, were not performed.

Materials & Methods: Hip capsule ligaments were obtained from 17 human cadavers (9 females, 7 males, 13 left and 8 right sides, mean age 83.65 ± 10.54 years). 18 iliofemoral, 9 ischiofemoral and 17 pubofemoral ligaments were prepared. Uniaxial stress-strain properties were obtained from the load-deformation curves before the secant elastic modulus was computed. Strain, elastic modulus and cross sections were compared.

Results: Strain and elastic modulus revealed no significant differences between the iliofemoral (strain 129.8 ± 11.1%, elastic modulus 48.8 ± 21.4 N/mm2), ischiofemoral (strain 128.7 ± 13.7%, elastic modulus 37.5 ± 20.4 N/mm2) and pubofemoral (strain 133.2 ± 23.7%, elastic modulus 49.0 ± 32.1 N/mm2) ligaments. The iliofemoral ligament (53.5 ± 15.1 mm2) yielded a significantly higher cross section compared to the ischiofemoral (19.2 ± 13.2 mm2) and pubofemoral (15.2 ± 7.2 mm2) ligament. No significant gender- or side-specific differences were determined. A comparison to the published data on the iliotibial tract revealed lower elasticity and less variation in the ligaments of the hip joint.

Conclusion: Comparison of the mechanical data of the hip joint ligaments indicates that their role may likely exceed a function as a mechanical stabilizer. Uniaxial testing of interwoven collagen fibers might lead to a misinterpretation of the mechanical properties of the hip capsule ligaments in the given setup, concealing its uniaxial properties. This underlines the need for a polyaxial test setup using fresh and non-embalmed tissues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5042535PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163306PLOS

Publication Analysis

Top Keywords

elastic modulus
24
hip capsule
16
capsule ligaments
16
hip joint
12
ligaments
10
hip
9
data hip
8
mechanical properties
8
gender- side-specific
8
side-specific differences
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!