Repeated Prolonged Exercise Decreases Maximal Fat Oxidation in Older Men.

Med Sci Sports Exerc

1Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, DENMARK; 2Department of Bioscience, Zoophysiology, Aarhus University, Aarhus, DENMARK; 3Department of Cardiology, University Hospital of Bispebjerg, Copenhagen, DENMARK; 4Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, SWEDEN; 5Department of Anaesthesia and Intensive Care, Karolinska University Hospital, Huddinge, Stockholm, SWEDEN; and 6Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, DENMARK.

Published: February 2017

Introduction/purpose: Fat metabolism and muscle adaptation was investigated in six older trained men (age, 61 ± 4 yr; V˙O2max, 48 ± 2 mL·kg·min) after repeated prolonged exercise).

Methods: A distance of 2706 km (1681 miles) cycling was performed over 14 d, and a blood sample and a muscle biopsy were obtained at rest after an overnight fast before and 30 h after the completion of the cycling. V˙O2max and maximal fat oxidation were measured using incremental exercise tests. HR was continuously sampled during cycling to estimate exercise intensity.

Results: The daily duration of exercise was 10 h and 31 ± 37 min, and the mean intensity was 53% ± 1% of V˙O2max. Body weight remained unchanged. V˙O2max and maximal fat oxidation rate decreased by 6% ± 2% (P = 0.04) and 32% ± 8% (P < 0.01), respectively. The exercise intensity that elicits maximal fat oxidation was not significantly decreased. Plasma free fatty acid (FA) concentration decreased (P < 0.002) from 500 ± 77 μmol·L to 160 ± 38 μmol·L. Plasma glucose concentration as well as muscle glycogen, myoglobin, and triacylglycerol content remained unchanged. Muscle citrate synthase and ß-hydroxy-acyl-CoA-dehydrogenase activities were unchanged, but the protein expression of HKII, GLUT4, and adipose triacylglycerol lipase were significantly increased.

Conclusions: Overall, the decreased maximal fat oxidation was probably due to lower exogenous plasma fatty acid availability and the muscle adaptation pattern indicates an increased glucose transport capacity and an increased muscle lipolysis capacity supporting an increased contribution of exogenous glucose and endogenous fat during exercise.

Download full-text PDF

Source
http://dx.doi.org/10.1249/MSS.0000000000001107DOI Listing

Publication Analysis

Top Keywords

maximal fat
20
fat oxidation
20
repeated prolonged
8
muscle adaptation
8
v˙o2max maximal
8
remained unchanged
8
fatty acid
8
fat
7
exercise
6
muscle
6

Similar Publications

Given the growing concern over the impact of brain health in individuals with overweight, understanding how mental exertion (ME) during exercise affects substrate oxidation and cardiorespiratory outcomes is crucial. This study examines how ME impacts these outcomes during an incremental exercise test in adults with overweight. Seventeen adults who were overweight completed an incremental exercise test on a cycle ergometer two times, with and without the Stroop task.

View Article and Find Full Text PDF

Maximal Intensity Exercise Induces Adipokine Secretion and Disrupts Prooxidant-Antioxidant Balance in Young Men with Different Body Composition.

Int J Mol Sci

January 2025

Department of Sports Medicine and Human Nutrition, Institute of Biomedical Sciences, Faculty of Physical Education and Sport, University of Physical Education in Kraków, 31-571 Kraków, Poland.

Maximal physical effort induces a disturbance in the body's energy homeostasis and causes oxidative stress. The aim of the study was to determine whether prooxidant-antioxidant balance disturbances and the secretion of adipokines regulating metabolism, induced by maximal intensity exercise, are dependent on body composition in young, healthy, non-obese individuals. We determined changes in the concentration of advanced protein oxidation products (AOPP), markers of oxidative damage to nucleic acids (DNA/RNA/ox), and lipid peroxidation (LPO); catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) activity, as well as concentrations of visfatin, leptin, resistin, adiponectin, asprosin, and irisin in the blood before and after maximal intensity exercise in men with above-average muscle mass (NFAT-HLBM), above-average fat mass (HFAT-NLBM), and with average body composition (NFAT-NLBM).

View Article and Find Full Text PDF

Background/aims: This cross-sectional study investigates body composition and strength in female breast cancer survivors, focusing on the effects of radical mastectomy and the presence of upper extremity lymphoedema. The main objective was to understand body composition, volumetry, and strength, as well as response to strength training in female breast cancer survivors.

Methods: Twenty-three women (aged 42-74 years old) with radical mastectomy in the last five years were assessed by measuring body composition (weight, water percentage, fat, muscle, and lean mass), maximal strength, perimeters, and brachial volumes.

View Article and Find Full Text PDF

Background: Type 2 Diabetes Mellitus (T2DM) is closely associated with the development of vascular damage in the heart. In this study, the researchers aimed to determine whether Aerobic Training (AT) and Vitamin D supplementation (Vit D) could alleviate heart complications and vascular damage caused by diabetes. The effects of an eight-week AT program and Vit D on the expression of miR-1, IGF-1 genes, and VEGF-B in the cardiomyocytes of rats with T2DM.

View Article and Find Full Text PDF

Purpose Of Review: Patients with familial hypercholesterolemia have an elevated risk of premature atherosclerotic cardiovascular disease. Risks can be minimized through pharmacological and 'lifestyle' behavioral (low fat diet, physical activity) therapies, although therapeutic adherence is sub-optimal. Behavioral interventions to promote familial hypercholesterolemia therapy adherence should be informed by theory-based psychological determinants for maximal efficacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!