Lack of increased signal intensity in the dentate nucleus after repeated administration of a macrocyclic contrast agent in multiple sclerosis: An observational study.

Medicine (Baltimore)

aDepartment of Neurology bInstitute of Clinical Radiology and Nuclear Medicine, Universitätsmedizin Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.

Published: September 2016

Recently, several studies reported increased signal intensity (SI) in the dentate nucleus (DN) after repeated application of gadolinium-based contrast agents (GBCAs), suggesting a deposition of gadolinium in this location. Patients with relapsing-remitting multiple sclerosis (RRMS) frequently show increased permeability of the blood-brain barrier as part of the inflammatory process in the brain parenchyma, which theoretically might increase the risk of gadolinium deposition. In this retrospective study, we investigated a possible increasing SI in the DN after repeated administrations of the macrocyclic contrast agent gadoterate meglumine.Forty-one RRMS patients (33 women, mean age 38 years) with at least 6 prior gadolinium-enhanced examinations (single dose gadoterate meglumine) were identified. A total of 279 unenhanced T1-weighted examinations were analyzed.SI ratio differences did not differ between the first and last MRI examination, neither for the DN-to-pons ratio (P = 0.594) nor for the DN-to-cerebellum ratio (P = 0.847). There was no correlation between the mean DN-to-pons, or between the mean DN-to-cerebellum SI ratio and the number of MRI examinations (P = 0.848 and 0.891), disease duration (P = 0.676 and 0.985), and expanded disability status scale (EDSS) (P = 0.639 and 0.945).We found no signal increases in the DN after a minimum of 6 injections of the macrocyclic GBCA gadoterate meglumine in RRMS patients. This warrants further investigations in regard to the true pathophysiologic basis of intracerebral gadolinium deposition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5265887PMC
http://dx.doi.org/10.1097/MD.0000000000004624DOI Listing

Publication Analysis

Top Keywords

increased signal
8
signal intensity
8
intensity dentate
8
dentate nucleus
8
nucleus repeated
8
macrocyclic contrast
8
contrast agent
8
multiple sclerosis
8
gadolinium deposition
8
rrms patients
8

Similar Publications

Silica-Activated Redox Signaling Confers Rice with Enhanced Drought Resilience and Grain Yield.

ACS Nano

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.

Under a changing climate, enhancing the drought resilience of crops is critical to maintaining agricultural production and reducing food insecurity. Here, we demonstrate that seed priming with amorphous silica (SiO) nanoparticles (NPs) (20 mg/L) accelerated seed germination speed, increased seedlings vigor, and promoted seedling growth of rice under polyethylene glycol (PEG)-mimicking drought conditions. An orthogonal approach was used to uncover the mechanisms of accelerated seed germination and enhanced drought tolerance, including electron paramagnetic resonance, Fourier transform infrared spectroscopy (FTIR), metabolomics, and transcriptomics.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a disease of the central nervous system, characterized by progressive demyelination and inflammation. MS is characterized by immune system attacks on the myelin sheath surrounding nerve fibers. Genome-wide association studies revealed a polymorphism in the signal transducer and activator of transcription 4 (STAT4) gene that increases risk for MS.

View Article and Find Full Text PDF

An overview of sound source localization based condition monitoring robots.

ISA Trans

December 2024

Centre for Efficiency and Performance Engineering, University of Huddersfield, Huddersfield HD1 3DH, UK. Electronic address:

As artificial intelligence advances and demand for cost-effective equipment maintenance in various fields increases, it is worth insightful research on utilizing robots embedded with sound source localization (SSL) technology for condition monitoring. Combining the two techniques has significant advantages, which are conducive to further classifying and tracking abnormal sources, thereby enhancing system performance at a lower cost. The paper provides an overview of current acoustic-based robotic techniques for condition monitoring, highlights the common SSL methods, and finds that localization performance heavily depends on signal quality.

View Article and Find Full Text PDF

Genome-wide analysis of GRAS gene family and functional identification of a putative development and maintenance of axillary meristematic tissue gene PlGRAS22 in Paeonia ludlowii.

Int J Biol Macromol

January 2025

School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, China. Electronic address:

The GRAS gene family, is instrumental in a myriad of biological processes, including plant growth and development. Our findings revealed that Paeonia ludlowii (Stern & G.Taylor) D.

View Article and Find Full Text PDF

A polysaccharide from Morchella esculenta mycelia: Structural characterization and protective effect on antioxidant stress on PC12 cells against HO-induced oxidative damage.

Int J Biol Macromol

January 2025

State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China. Electronic address:

Morchella esculenta (L.) Pers. is considered a precious edible and medicinal fungus due to its strict growth environment requirements, difficult to cultivate, resulted in expensive in the market.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!