Placing electrical charges on nanomaterials is a means to extend their functional capabilities in nanoelectronics and sensoring applications. This paper explores the effect of charging nitrogen bases cytosine (Cyt) and adenine (Ade) via protonation on their noncovalent interaction with carbon nanotubes (CNT) using quantum chemical calculations performed at the M05-2X/6-31++G** level of theory alongside with a molecular graphics method. It is shown that the protonation of the bases causes threefold increase of the interaction energy in the CNT·Cyt·H and СNT·Ade·H complexes as compared to the CNT complexes formed with neutral bases. There is also some shortening of the base-CNT distance by ca 0.13Ǻ. The visualization of the electrostatic potential distribution with the molecular graphics reveals that the positive potential due to the protonated bases extends to a cylindrical domain of the nanotube segment adjacent to the base binding site. Furthermore, subtraction of the electrostatic potential maps of the protonated bases from the maps of their complexes with CNTs reveals an area of negative potential on the CNT surface, which reflects the location of the adsorbed base. The positive charge transfer of ca 0.3 e from the protonated bases to the CNT strengthens the interaction in the CNT·Cyt·H and СNT·Ade·H complexes. The analysis of the frontier orbitals shows that the LUMOs of the complexes mainly reside on the CNT, while the HOMOs spread over both components of each complex. The observed effects may facilitate the design of nanomaterials involving nitrogen bases and CNTs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmgm.2016.09.009DOI Listing

Publication Analysis

Top Keywords

protonated bases
12
carbon nanotubes
8
nitrogen bases
8
molecular graphics
8
cnt·cyt·h Сnt·ade·h
8
Сnt·ade·h complexes
8
electrostatic potential
8
bases
7
cnt
5
complexes
5

Similar Publications

Halide-free ion pair organocatalyst from biobased α-hydroxy acid for cycloaddition of CO to epoxide.

Org Biomol Chem

January 2025

State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China.

The cycloaddition of CO to epoxide (CCE) reactions produce valuable cyclic carbonates useful in the electrolytes of lithium-ion batteries, as organic solvents, and in polymeric materials. However, halide-containing catalysts are predominantly used in these reactions, despite halides being notoriously corrosive to steel processing equipment and residual halides also having harmful effects. To eliminate the reliance on halides as cocatalyst in most CCE reactions, halide-free catalysts are highly desirable.

View Article and Find Full Text PDF

Deprotonation of 8-Oxo-7,8-dihydroadenine Radical Cation in Free and Encumbered Context: A Theoretical Study.

ACS Omega

December 2024

State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang 712083, China.

Due to the lower oxidation potential than natural nucleic acid bases, one-electron oxidation of DNA is usually funneled into the direction of intermediates for oxidized DNA damage like 8-oxo-7,8-dihydroadenine (8-oxoA) leading to a radical cation, which may undergo facile deprotonation. However, compared to the sophisticated studies devoted to natural bases, much less is known about the radical cation degradation behavior of an oxidized DNA base. Inspired by this, a comprehensive theoretical investigation is performed to illuminate the deprotonation of 8-oxoA radical cation (8-oxoA) in both free and encumbered context by calculating the p value and mapping the energy profiles.

View Article and Find Full Text PDF

Microenvironmental modulation breaks intrinsic pH limitations of nanozymes to boost their activities.

Nat Commun

December 2024

College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, China.

Functional nanomaterials with enzyme-mimicking activities, termed as nanozymes, have found wide applications in various fields. However, the deviation between the working and optimal pHs of nanozymes has been limiting their practical applications. Here we develop a strategy to modulate the microenvironmental pHs of metal-organic framework (MOF) nanozymes by confining polyacids or polybases (serving as Brønsted acids or bases).

View Article and Find Full Text PDF

Solution equilibrium and redox properties of metal complexes with 2-formylpyridine guanylhydrazone derivatives: Effect of morpholine and piperazine substitutions.

J Inorg Biochem

December 2024

Department of Molecular and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7-8, H-6720 Szeged, Hungary. Electronic address:

Schiff bases derived from aminoguanidine are extensively investigated for their structural versatility. The tridentate 2-formylpyridine guanylhydrazones act as analogues of 2-formyl or 2-acetylpyridine thiosemicarbazones, where the thioamide unit is replaced by the guanidyl group. Six derivatives of 2-formylpyridine guanylhydrazone were synthesized and their proton dissociation and complex formation processes with Cu(II), Fe(II) and Fe(III) ions were studied using pH-potentiometry, UV-visible, NMR and electron paramagnetic resonance spectroscopic methods.

View Article and Find Full Text PDF

The primary photoisomerization reactions of the all- to 13- and 11- to all- retinal protonated Schiff base (RPSB) in microbial and animal rhodopsins, respectively, occur on a subpicosecond time scale with high quantum yields. At the same time, the isolated RPSB exhibits slower excited-state decay, in particular, in its all- form, and hence the interaction with the protein environment is capable of changing the time scale as well as the specificity of the reaction. Here, by using the high-level QM/MM calculations, we provide a comparative study of the primary photoresponse of and RPSB isomers in both the initial forms and first photoproducts of microbial rhodopsin 2 (KR2) and bacteriorhodopsin (BR), and animal visual rhodopsin (Rho).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!