The kinetics and mechanism of the oxidation of the important antitubercular agent, ethionamide, ETA (2-ethylthioisonicotinamide), by peracetic acid (PAA) have been studied. It is effectively a biphasic reaction with an initial rapid first phase of the reaction which is over in about 5 s and a second slower phase of the reaction which can run up to an hour. The first phase involves the addition of a single oxygen atom to ethionamide to form the S-oxide. The second phase involves further oxidation of the S-oxide to desulfurization of ETA to give 2-ethylisonicotinamide. In contrast to the stability of most organosulfur compounds, the S-oxide of ETA is relatively stable and can be isolated. In conditions of excess ETA, the stoichiometry of the reaction was strictly 1:1: CHCOH + Et(CH)C(═S)NH → CHCOH + Et(CH)C(═NH)SOH. In this oxidation, it was apparent that only the sulfur center was the reactive site. Though ETA was ultimately desulfurized, only the S-oxide was stable. Electrospray ionization (ESI) spectral analysis did not detect any substantial formation of the sulfinic and sulfonic acids. This suggests that cleavage of the carbon-sulfur bond occurs at the sulfenic acid stage, resulting in the formation of an unstable sulfur species that can react further to form more stable sulfur species. In this oxidation, no sulfate formation was observed. ESI spectral analysis data showed a final sulfur species in the form of a dimeric sulfur monoxide species, HSO. We derived a bimolecular rate constant for the formation of the S-oxide of (3.08 ± 0.72) × 10 M s. Oxidation of the S-oxide further to give 2-ethylisonicotinamide gave zero order kinetics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.6b07375 | DOI Listing |
J Colloid Interface Sci
January 2025
Department of Chemistry, Kay Lab of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education, Beijing Key Laboratory for Analytical Methods and Instrumentation, Tsinghua University, 100084 Beijing, China. Electronic address:
The integration of reactive oxygen species (ROS) related photodynamic therapy (PDT) with the strategy of reshaping the tumor microenvironment (TME) has emerged as a potential approach for nanodiagnostic and therapeutic interventions. However, the therapeutic efficacy based on ROS treatments may be hindered by intracellular antioxidants such as glutathione (GSH) and tumor hypoxia. To address these challenges, a nanoplatform based on GSH-responsive multifunctional porphyrinic metal-organic framework (PCN-224@Au@MnO@HA, PAMH) was proposed.
View Article and Find Full Text PDFEnviron Res
January 2025
Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science and International Institute of Sustainability Science, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
Invest Ophthalmol Vis Sci
January 2025
Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States.
Purpose: Sulfur mustard gas (SM) exposure to eyes causes multiple corneal injuries including stromal cell loss in vivo. However, mechanisms mediating stromal cell loss/death remains elusive. This study sought to test the novel hypothesis that SM-induced toxicity to human corneal stromal fibroblasts involves ferroptosis mechanism via p38 MAPK signaling.
View Article and Find Full Text PDFActa Crystallogr C Struct Chem
February 2025
Department Chemie, Ludwig-Maximilians Universität, Butenandtstrasse 5-13 (Haus D), D-81377 München, Germany.
The monoprotonated species of 2-aminomalonyl difluoride, namely, 1,3-difluoro-1,3-dioxopropan-2-aminium dihydrogen trifluoride, [CHFNO][HF], was synthesized from sulfur tetrafluoride in anhydrous hydrogen fluoride (aHF) with [NH][CHNO] as the starting material. The solvent was removed and the salt was dissolved in aHF and crystallized. In the solid state, the three-dimensional network is built by medium-strong N-H.
View Article and Find Full Text PDFCell Rep
January 2025
Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. Electronic address:
Caenorhabditis elegans proliferates poorly in the presence of abundant Actinobacteria from its natural ecology, but it is unknown why. Here, we show how perturbed levels of hydrogen sulfide modulate the growth rate of both C. elegans and Actinobacteria.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!