Recent research suggests that systemic signalling and communication between roots and leaves plays an important role in plant defence against herbivores. In the present study, we show that the oviposition of the two-spotted spider mite Tetranychus urticae in the systemic leaves of citrus rootstock Citrus aurantium (sour orange) was reduced by 50% when a lower leaf was previously infested with conspecifics. Metabolomic and gene expression analysis of the root efflux revealed a strong accumulation of glutamic acid (Glu) that triggered the expression of the citrus putative glutamate receptor (GRL) in the shoots. Additionally, uninfested sour orange systemic leaves showed increased expression of glutamate receptors and higher amounts of jasmonic acid (JA) and 12-oxo-phytodienoic acid in plants that were previously infested. Glu perception in the shoots induced the JA pathway, which primed LOX-2 gene expression when citrus plants were exposed to a second infestation. The spider mite-susceptible citrus rootstock Cleopatra mandarin (C. unshiu) also expressed systemic resistance, although the resistance was less effective than the resistance in sour orange. Surprisingly, the mobile signal in Cleopatra mandarin was not Glu, which suggests a strong genotype-dependency for systemic signalling in citrus. When the cultivar Clemenules (C. clementina) was grafted onto sour orange, there was a reduction in symptomatic leaves and T. urticae populations compared to the same cultivar grafted onto Cleopatra mandarin. Thus, systemic resistance is transmitted from the roots to the shoots in citrus and is dependent on rootstock resistance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5066491 | PMC |
http://dx.doi.org/10.1093/jxb/erw335 | DOI Listing |
Data Brief
February 2025
Department of CSE, Daffodil International University, Bangladesh.
A comprehensive dataset on lemon leaf disease can surely bring a lot of potentials into the development of agricultural research and the improvement of disease management strategies. This dataset was developed from 1354 raw images taken with professional agricultural specialist guidance from July to September 2024 in Charpolisha, Jamalpur, and further enhanced with augmented techniques, adding 9000 images. The augmentation process involves a set of techniques-flipping, rotation, zooming, shifting, adding noise, shearing, and brightening-to increase variety for different lemon leaf condition representations.
View Article and Find Full Text PDFFront Vet Sci
December 2024
State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.
Introduction: The reasonable and efficient utilization of agricultural by-products as animal feed has the capacity to not only mitigate the scarcity of conventional feedstuff but also alleviate the environmental load. This study was aimed to investigate the effects of feeding citrus pomace (CP) fermented with combined probiotics on growth performance, carcass traits, meat quality and antioxidant capacity in yellow-feathered broilers.
Methods: A cohort of 540 female yellow-feathered broilers (Qingyuan partridge chicken, 90-day-old) were randomly divided into three groups and, respectively, fed the basal diet (Control), diet containing 10% unfermented CP (UFCP) and diet containing 10% fermented CP (FCP).
BMC Res Notes
January 2025
Planta Piloto de Procesos Industriales Microbiológicos (PROIMI - CONICET), Tucumán, Argentina.
Background: Postharvest lemons are affected by several fungal infections, and as alternatives to chemical fungicides for combating these infections, different microbial biocontrol agents have been studied, with the Clavispora lusitaniae 146 strain standing out. Although strain 146 has proven to be an effective agent, the influence of a microbial biological control agent on the postharvest lemon microbiome has not been studied until now. Thus, this study aimed to evaluate how the epiphytic microbiome of postharvest lemons is affected by the application of the biocontrol yeast C.
View Article and Find Full Text PDFIn the Rutaceae family is the biggest among all fruits, tradtionally used for several purposes due to its diverse ethnomedicinal, phytochemical, and pharmacological activities. Different portions of this plant have been used as sedatives and anti-inflammatory medications, as well as to treat coughs, fevers, asthma, diarrhea, ulcers, and diabetes. There is a scientific potential for the methanolic seed extract to contain bioactive compounds, similar to those found in other parts of the plant.
View Article and Find Full Text PDFHortic Res
January 2025
State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China.
Although plant secretory tissues play important roles in host defense against herbivores and pathogens and the attraction of insect pollinators, their genetic control remains elusive. Here, it is focused that current progress has been made in the genetic regulatory mechanisms underpinning secretory tissue development in land plants. C1HDZ transcription factors (TFs) are found to play crucial roles in the regulation of internal secretory tissues in liverworts and as well as external secretory tissues in peach.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!