Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Cervical auscultation (CA) may be used to complement feeding/swallowing evaluations when assessing for aspiration. There are no published pediatric studies that compare the properties of sounds between aspirating and nonaspirating swallows.
Aim: To establish acoustic and perceptual profiles of aspirating and nonaspirating swallow sounds and determine if a difference exists between these 2 swallowing types.
Methods: Aspiration sound clips were obtained from recordings using CA simultaneously undertaken with videofluoroscopic swallow study. Aspiration was determined using the Penetration-Aspiration Scale. The presence of perceptual swallow/breath parameters was rated by 2 speech pathologists who were blinded to the type of swallow. Acoustic data between groups were compared using Mann Whitney U-tests, while perceptual differences were determined by a test of 2 proportions. Combinations of perceptual parameters of 50 swallows (27 aspiration, 23 no aspiration) from 47 children (57% male) were statistically analyzed using area under a receiver operating characteristic (aROC), sensitivity, specificity, and positive and negative predictive values to determine predictors of aspirating swallows.
Results: The combination of post-swallow presence of wet breathing and wheeze and absence of GRS and normal breathing was the best predictor of aspiration (aROC = 0.82, 95% CI, 0.70-0.94). There were no significant differences between these 2 swallow types for peak frequency, duration, and peak amplitude.
Conclusion: Our pilot study has shown that certain characteristics of swallow obtained using CA may be useful in the prediction of aspiration. However, further research comparing the acoustic swallowing sound profiles of normal children to children with dysphagia (who are aspirating) on a larger scale is required.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0003489416669953 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!