Rev1 is a member of the Y-family of DNA polymerases and is known for its deoxycytidyl transferase activity that incorporates dCMP into DNA and its ability to function as a scaffold factor for other Y-family polymerases in translesion bypass events. Rev1 also is involved in mutagenic processes during somatic hypermutation of immunoglobulin genes. In light of the mutation pattern consistent with dCMP insertion observed earlier in mouse fibroblast cells treated with a base excision repair-inducing agent, we questioned whether Rev1 could also be involved in base excision repair (BER). Here, we uncovered a weak 5'-deoxyribose phosphate (5'-dRP) lyase activity in mouse Rev1 and demonstrated the enzyme can mediate BER in vitro The full-length Rev1 protein and its catalytic core domain are similar in their ability to support BER in vitro The dRP lyase activity in both of these proteins was confirmed by NaBH reduction of the Schiff base intermediate and kinetics studies. Limited proteolysis, mass spectrometry and deletion analysis localized the dRP lyase active site to the C-terminal segment of Rev1's catalytic core domain. These results suggest that Rev1 could serve as a backup polymerase in BER and could potentially contribute to AID-initiated antibody diversification through this activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5159550 | PMC |
http://dx.doi.org/10.1093/nar/gkw869 | DOI Listing |
Neuroendocrinology
January 2025
Background: Temozolomide (TMZ), a non-classical alkylating agent, possesses lipophilic properties that allow it to cross the blood-brain barrier, making it active within the central nervous system. Furthermore, the adverse reactions of the TMZ are relatively mild, which is why it is currently recommended as a first-line chemotherapy drug for refractory pituitary adenomas (RPAs) and pituitary carcinomas (PCs).
Summary: Systematic evaluations indicate a radiological response rate of 41% and a hormonal response rate of 53%, underscoring TMZ clinical efficacy, particularly when combined with radiotherapy.
Nucleic Acids Res
January 2025
School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland.
Copper compounds with artificial metallo-nuclease (AMN) activity are mechanistically unique compared to established metallodrugs. Here, we describe the development of a new dinuclear copper AMN, Cu2-BPL-C6 (BPL-C6 = bis-1,10-phenanthroline-carbon-6), prepared using click chemistry that demonstrates site-specific DNA recognition with low micromolar cleavage activity. The BPL-C6 ligand was designed to force two redox-active copper centres-central for enhancing AMN activity-to bind DNA, via two phenanthroline ligands separated by an aliphatic linker.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Program in Genetics, Molecular, and Cellular Biology, Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111.
CAG/CTG repeats are prone to expansion, causing several inherited human diseases. The initiating sources of DNA damage which lead to inaccurate repair of the repeat tract to cause expansions are not fully understood. Expansion-prone CAG/CTG repeats are actively transcribed and prone to forming stable R-loops with hairpin structures forming on the displaced single-stranded DNA (S-loops).
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.
DNA repair involves various intricate pathways that work together to maintain genome integrity. XPF (ERCC4) is a structural endonuclease that forms a heterodimer with ERCC1 that is critical in both single-strand break repair (SSBR) and double-strand break repair (DSBR). Although the mechanistic function of ERCC1/XPF has been established in nucleotide excision repair (NER), its role in long-patch base excision repair (BER) has recently been discovered through the 5'-Gap pathway.
View Article and Find Full Text PDFLife (Basel)
December 2024
ENT Department, University Hospital of Alexandroupolis, Democritus University of Thrace-Medical School, 68100 Alexandroupolis, Greece.
Transoral robotic surgery (TORS) for tongue base reduction (TBR) and/or epiglottic surgery is an effective treatment option for selected patients with moderate to severe obstructive sleep apnoea (OSA). This systematic review aims to provide an up-to-date overview of current practices and challenges associated with TORS for OSA. PubMed and Embase databases were searched up to December 2022 following PRISMA guidelines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!