Geraniol, an acyclic dietary monoterpene, has been found to suppress cancer survival and growth. However, the molecular mechanism underlying the antitumor action of geraniol has not been investigated at the genome-wide level. In this study, we analyzed the microarray data obtained from geraniol-treated prostate cancer cells. Geraniol potently altered a gene expression profile and primarily down-regulated cell cycle-related gene signatures, compared to linalool, another structurally similar monoterpene that induces no apparent phenotypic changes. Master regulator analysis using the prostate cancer-specific regulatory interactome identified that the transcription factor E2F8 as a specific target molecule regulates geraniol-specific cell cycle signatures. Subsequent experiments confirmed that geraniol down-regulated E2F8 expression and the knockdown of E2F8 was sufficient to suppress cell growth by inducing G /M arrest. Epidemiological analysis showed that E2F8 is up-regulated in metastatic prostate cancer and associated with poor prognosis. These results indicate that E2F8 is a crucial transcription regulator controlling cell cycle and survival in prostate cancer cells. Therefore, our study provides insight into the role of E2F8 in prostate cancer biology and therapeutics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5083744 | PMC |
http://dx.doi.org/10.1002/cam4.864 | DOI Listing |
Phys Chem Chem Phys
January 2025
Center for Advanced Materials Research, Beijing Normal University at Zhuhai, Zhuhai, 519087, China.
Understanding the molecular mechanism of inhibitor binding to prostate-specific membrane antigen (PSMA) is of fundamental importance for designing targeted drugs for prostate cancer. Here we designed a series of PSMA-targeting inhibitors with distinct molecular structures, which were synthesized and characterized using both experimental and computational approaches. Microsecond molecular dynamics simulations revealed the structural and thermodynamic details of PSMA-inhibitor interactions.
View Article and Find Full Text PDFEJNMMI Res
January 2025
Department of Nuclear Medicine, University Hospital of Cologne, Kerpener Straße 62, 50937, Cologne, Germany.
Background: In clinical practice, several radiopharmaceuticals are used for PSMA-PET imaging, each with distinct biodistribution patterns. This may impact treatment decisions and outcomes, as eligibility for PSMA-directed radioligand therapy is usually assessed by comparing tumoral uptake to normal liver uptake as a reference. In this study, we aimed to compare tracer uptake intraindividually in various reference regions including liver, parotid gland and spleen as well as the respective tumor-to-background ratios (TBR) of different F-labeled PSMA ligands to today's standard radiopharmaceutical Ga-PSMA-11 in a series of patients with biochemical recurrence of prostate cancer who underwent a dual PSMA-PET examination as part of an individualized diagnostic approach.
View Article and Find Full Text PDFEJNMMI Radiopharm Chem
January 2025
Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.
Background: Poly (ADP-ribose) polymerase (PARP) enzymes are crucial for the repair of DNA single-strand breaks and have become key therapeutic targets in homologous recombination-deficient cancers, including prostate cancer. To enable non-invasive monitoring of PARP-1 expression, several PARP-1-targeting positron emission tomography (PET) tracers have been developed. Here, we aimed to preclinically investigate [carbonyl-C]DPQ as an alternative PARP-1 PET tracer as it features a strongly distinct chemotype compared to the frontrunners [F]FluorThanatrace and [F]PARPi.
View Article and Find Full Text PDFStrahlenther Onkol
January 2025
Department of Radiation Oncology, Hacettepe University Faculty of Medicine, Ankara, Turkey.
Purpose: Our objective was to identify the dosimetric parameters and prostate volume that most accurately predict the incidence of acute and late gastrointestinal (GI) and genitourinary (GU) toxicity in prostate cancer stereotactic ablative radiotherapy (SABR) treatments.
Methods: We conducted a retrospective analysis of 122 patients who received SABR for prostate cancer at our clinic between March 2018 and September 2022 using a five-fraction SABR regimen. The existing plans of these patients were re-evaluated according to our institutional protocols (Hacettepe University [HU-1] and HU-2) as well as PACE‑B, RTOG 0938, and NRG GU005 dose-volume constraints.
Strahlenther Onkol
January 2025
Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
Background: This study aims to evaluate the capabilities and limitations of large language models (LLMs) for providing patient education for men undergoing radiotherapy for localized prostate cancer, incorporating assessments from both clinicians and patients.
Methods: Six questions about definitive radiotherapy for prostate cancer were designed based on common patient inquiries. These questions were presented to different LLMs [ChatGPT‑4, ChatGPT-4o (both OpenAI Inc.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!