IL-35 is a novel heterodimeric and inhibitory cytokine, composed of interleukin-12 subunit alpha (P35) and Epstein-Barr virus -induced gene 3 (EBI3). IL-35 has been reported to be produced by a range of cell types, especially regulatory T cells, and to exert immunosuppressive effects via the STATx signaling pathway. In this study, we demonstrated that IL-35 expression was elevated in both serum and tumors in patients with colorectal cancer. IL-35 mainly expressed in CD4+ T cells in human colorectal cancer tumors and adjacent tissues. Increased IL-35 expression in tumor-adjacent tissues was significantly associated with tumor metastasis. IL-35 inhibited the proliferation of CD4+CD25- T effector cells in vitro in a dose-dependent manner, and its suppression was partially reversed by applying IL-35-neutralizing antibodies. IL-35 treatment activated the phosphorylation of both STAT1 and STAT3 in human CD4+ T cells. Meanwhile, IL-35 induced a positive feedback loop to promote its own production. We observed that Tregs obtained from colorectal cancer patients were capable of inducing more IL-35 production. In addition, EBI3 promoter-driven luciferase activity was higher than that of the mock plasmid after IL-35stimulation. Thus, our study indicates that the high level of IL-35 in colorectal cancer promotes the production of IL-35 via STAT1 and STAT3, which suppresses T cell proliferation and may participate in tumor immunotolerance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5341959 | PMC |
http://dx.doi.org/10.18632/oncotarget.12193 | DOI Listing |
Drug Dev Res
February 2025
South University School of Pharmacy, Savannah, Giorgia, USA.
KRAS is a proto-oncogene that is found to be mutated in 15% of all metastatic cancers with high prevalence in pancreatic, lung, and colorectal cancers. Additionally, patients harboring KRAS mutations respond poorly to standard cancer therapy. As a result, KRAS is seen as an attractive target for targeted anticancer therapy.
View Article and Find Full Text PDFInt J Clin Oncol
January 2025
Translational Research Support Section, National Cancer Center Hospital East, Chiba, Japan.
Early cancer detection substantially improves the rate of patient survival; however, conventional screening methods are directed at single anatomical sites and focus primarily on a limited number of cancers, such as gastric, colorectal, lung, breast, and cervical cancer. Additionally, several cancers are inadequately screened, hindering early detection of 45.5% cases.
View Article and Find Full Text PDFPak J Pharm Sci
January 2025
Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan.
This study evaluated the antioxidant and antiproliferative effects of aqueous, ethanolic and methanolic extracts of Sedum nicaeense flowers and leaves. The MTT assay assessed cytotoxicity against colorectal cancer cells (Caco-2, HCT-116), breast cancer cells (T47D, MCF-7) and normal fibroblasts (MRC-5), while the ferric-reducing antioxidant power (FRAP) assay measured antioxidant capacity. Essential oils from flowers and leaves were analyzed using gas chromatography-mass spectrometry (GC-MS).
View Article and Find Full Text PDFAtractylenolide I (ATL-I) can interfere with Colorectal cancer (CRC) cell proliferation by changing apoptosis, glucose metabolism and other behaviors, making it an effective drug for inhibiting CRC tumor growth. In this paper, we investigated the interactions between ATL-I and Keratin 7 (KRT7), a CRC-specific marker, to determine the potential pathways by which ATL-I inhibits CRC development. The KRT7 expression level in CRC was predicted online using the GEPIA website and then validated.
View Article and Find Full Text PDFMol Cancer
January 2025
Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing, 100191, China.
The Kirsten rat sarcoma viral oncogene homolog (KRAS) protein plays a key pathogenic role in oncogenesis, cancer progression, and metastasis. Numerous studies have explored the role of metabolic alterations in KRAS-driven cancers, providing a scientific rationale for targeting metabolism in cancer treatment. The development of KRAS-specific inhibitors has also garnered considerable attention, partly due to the challenge of acquired treatment resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!