AI Article Synopsis

  • The study emphasizes the necessity of using various bioanalytical methods to thoroughly evaluate the pharmacokinetics (PK) of complex bioconjugates, particularly antibody-drug conjugates (ADCs).
  • A method combining immunocapture extraction and LC-MS analysis was employed to analyze the drug antibody ratio (DAR) of the ADC Tras-mcVC-PF06380101 in rats, which provided detailed profiles after different doses.
  • Results showed a strong correlation between PK profiles obtained from ligand-binding assays and the calculated conjugated payload, highlighting the effectiveness of this new approach for understanding ADC metabolism and sensitivity.

Article Abstract

Aim: Complex nature of bioconjugates require multiple bioanalytical approaches to support PK and absorption, distribution, metabolism and excretion characterization. For antibody-drug conjugate (ADC) bioanalysis both LC-MS and ligand-binding assays (LBAs) are employed.

Results: A method consisting of immunocapture extraction of ADC from biomatrices followed by LC-MS analysis of light and heavy chain is described. Drug antibody ratio (DAR) profiles of ADC Tras-mcVC-PF06380101 dosed at 0.3, 1 and 3 mg/kg in Sprague Dawley rats were obtained. Combined with total antibody (monoclonal antibody) measurement by LBA, conjugated payload concentration was calculated.

Conclusion: PK profiles from LBA, ADC and calculated conjugated payload (DAR × monoclonal antibody) were in good agreement. We present a new tool for PK assessment of ADCs while also exploring ADC metabolism and DAR sensitivity of LBA ADC assay.

Download full-text PDF

Source
http://dx.doi.org/10.4155/bio-2016-0160DOI Listing

Publication Analysis

Top Keywords

conjugated payload
12
calculated conjugated
8
antibody-drug conjugate
8
monoclonal antibody
8
lba adc
8
adc
6
payload immunoassay
4
immunoassay lc-ms
4
lc-ms intact
4
intact protein
4

Similar Publications

OncoFAP is an ultrahigh affinity ligand of fibroblast activation protein (FAP), a tumor-associated antigen overexpressed in the stroma of the majority of solid tumors. OncoFAP has been previously implemented as a tumor-homing moiety for the development of small molecule drug conjugates (SMDCs). In the same context, the glycine--proline dipeptide was included with the aim to selectively undergo cleavage only in the presence of the target FAP, triggering the consequent release of the cytotoxic payload in the tumor microenvironment.

View Article and Find Full Text PDF

Bioorthogonalized light-responsive click-and-uncage platform has enabled precise cell surface engineering and timed payload release, but most of such photoactivatable prodrugs have "always-on" photoactivity leading to the dark toxicity. On the other hand, the conditionally activatable photocage is limited to the application of fluorogenic probe/photosensitizer liberation. Herein, we devise a conditionally activatable theranostic platform based on the tetrazine (Tz)-boron-dipyrromethene (BODIPY) construct, in which tetrazine serves as a quencher motif to disable both the fluorescence and photoresponsivity of BODIPY.

View Article and Find Full Text PDF

While in theory antibody drug conjugates (ADCs) deliver high-dose chemotherapy directly to target cells, numerous side effects are observed in clinical practice. We sought to determine the effect of linker design (cleavable versus non-cleavable), drug-to-antibody ratio (DAR), and free payload concentration on systemic toxicity. Two systematic reviews were performed via PubMed search of clinical trials published between January 1998-July 2022.

View Article and Find Full Text PDF

The bioorthogonal tetrazine-triggered cleavage of trans-cyclooctene(TCO)-linked payloads has strong potential for widespread use in drug delivery and in particular in click-cleavable antibody-drug conjugates (ADCs). However, clinical translation is hampered by an inverse correlation between click reactivity and payload release yield, requiring high doses of less reactive tetrazines to drive in vivo TCO reactions and payload release to completion. Herein we report that the cause for the low release when using the highly reactive bis-(2-pyridinyl)-tetrazine is the stability of the initially formed 4,5-dihydropyridazine product, precluding tautomerization to the releasing 1,4-dihydropyridazine tautomer.

View Article and Find Full Text PDF

Benzyl Ammonium Carbamates Undergo Two-Step Linker Cleavage and Improve the Properties of Antibody Conjugates.

Angew Chem Int Ed Engl

December 2024

Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702, USA.

Targeted payload delivery strategies, such as antibody-drug conjugates (ADCs), have emerged as important therapeutics. Although considerable efforts have been made in the areas of antibody engineering and labeling methodology, improving the overall physicochemical properties of the linker/payload combination remains an important challenge. Here we report an approach to create an intrinsically hydrophilic linker domain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!