Nonlinear optical responses of materials play a vital role for the development of active nanophotonic and plasmonic devices. Optical nonlinearity induced by intense optical excitation of mobile electrons in metallic nanostructures can provide large-amplitude, dynamic tuning of their electromagnetic response, which is potentially useful for all-optical processing of information and dynamic beam control. Here we report on the sub-picosecond optical nonlinearity of indium tin oxide nanorod arrays (ITO-NRAs) following intraband, on-plasmon-resonance optical pumping, which enables modulation of the full-visible spectrum with large absolute change of transmission, favourable spectral tunability and beam-steering capability. Furthermore, we observe a transient response in the microsecond regime associated with slow lattice cooling, which arises from the large aspect-ratio and low thermal conductivity of ITO-NRAs. Our results demonstrate that all-optical control of light can be achieved by using heavily doped wide-bandgap semiconductors in their transparent regime with speed faster than that of noble metals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5056417 | PMC |
http://dx.doi.org/10.1038/ncomms12892 | DOI Listing |
Nat Nanotechnol
January 2025
Center for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, China.
Vision (Basel)
January 2025
Mechanical and Industrial Engineering Department, University of Illinois Chicago, Chicago, IL 60607, USA.
The present work characterized the effects of hydration on the viscoelastic tensile properties of the sclera. Scleral strips were dissected from the posterior region near the optic nerve head of porcine eyes in the superior-inferior direction. The samples were divided into four hydration groups and their mechanical response was characterized by conducting uniaxial tensile stress-relaxation experiments.
View Article and Find Full Text PDFChem Sci
January 2025
Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University Nanning Guangxi 530004 China
Acentric crystalline materials are the cornerstone of numerous cutting-edge technologies and have been highly sought-after, but they are difficult to construct controllably. Herein, by introducing a new p-block element to break the symmetrical environment of the d transition metal in the centric matrix TiTeO, a novel acentric tellurite sulfate, namely Ti(TeO)(SO), was successfully constructed. In its structure, two types of p-block element-centered oxo-anionic groups, [TeO] and [SO], endow [TiO] with an out-of-center distortion along the local C[111] direction, which is rare in titanium oxides containing a lone-pair cation.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
DICP: Chinese Academy of Sciences Dalian Institute of Chemical Physics, State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, CHINA.
Broad-temperature optical thermometry necessitates materials with exceptional sensitivity and stability across varied thermal conditions, presenting challenges for conventional systems. Here, we report a lead-free, vacancy-ordered perovskite Cs2TeCl6, that achieves precise temperature sensing through a novel combination of self-trapped excitons (STEs) photoluminescence (PL) lifetime modulation and unprecedented fifth-order phonon anharmonicity. The STEs PL lifetime demonstrates a highly temperature-sensitive response from 200 to 300 K, ideal for low-to-intermediate thermal sensing.
View Article and Find Full Text PDFChemistry
January 2025
Middle East Technical University: Orta Dogu Teknik Universitesi, Chemistry, Universiteler Mah., 06800, Cankaya, TURKEY.
This study introduces a new donor group capable of activating click-type [2+2] cycloaddition-retroelectrocyclizations, generally known for their limited scope. Target chromophores were synthesized using isocyanate-free urethane synthesis. The developed synthetic method allows for the tuning of the optical properties of the chromophores by modifying the donor groups, the acceptor units, and the side chains.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!