The aims of this study were to evaluate porcine sperm vitrification in cryoloops, with and without two different cryoprotectants and assess two warming procedures. Extended (n = 3; r = 4) and raw (n = 5; r = 2) semen was diluted in media without and with cryoprotectants (4% dimethylformamide and 4% glycerol) to a final concentration of 20 × 10 spermatozoa ml and vitrified using the cryoloops method. Two warming procedures were evaluated: rapid method (30 s at 37°C) and an ultra-rapid method (7 s at 75°C, followed by 30 s at 37°C). Total motility (phase contrast), sperm viability (6-carboxifluorescein diacetate and propidium iodide stain), membrane function (hypo-osmotic swelling test), acrosome integrity (phase contrast), chromatin condensation (toluidine blue stain) and chromatin susceptibility to acid denaturation (acridine orange stain) were evaluated before and after vitrification and analysed using Friedman's test. In all media, the only seminal parameters that were maintained after vitrification were chromatin condensation and integrity. Vitrification of porcine spermatozoon using cryoloops, both in the presence or absence of cryoprotectants and independent of the warming procedure used, permits conservation of sperm chromatin condensation and integrity. It would be interesting to further verify this by producing porcine embryos using vitrified spermatozoon with intracytoplasmic sperm injection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/and.12706 | DOI Listing |
The eukaryotic genome is packaged into chromatin, which is composed of a nucleosomal filament that coils up to form more compact structures. Chromatin exists in two main forms: euchromatin, which is relatively decondensed and enriched in transcriptionally active genes, and heterochromatin, which is condensed and transcriptionally repressed . It is widely accepted that chromatin architecture modulates DNA accessibility, restricting the access of sequence-specific, gene-regulatory, transcription factors to the genome.
View Article and Find Full Text PDFThe nuclear pore complex (NPC), a multisubunit complex located within the nuclear envelope, regulates RNA export and the import and export of proteins. Here we address the role of the NPC in driving thermal stress-induced 3D genome repositioning of ( ) genes in yeast. We found that two nuclear basket proteins, Mlp1 and Nup2, although dispensable for NPC integrity, are required for driving genes into coalesced chromatin clusters, consistent with their strong, heat shock-dependent recruitment to gene regulatory and coding regions.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
Previous studies have demonstrated that γ-Aminobutyric acid (GABA) effectively alleviates heavy metal stresses by maintaining the redox balance and reducing the accumulation of reactive oxygen species (ROS). However, little is known about the role of GABA on programmed cell death (PCD) under Cd treatments in plants. The present study investigated the effects of GABA on Cd-induced PCD in two species, oilseed rape (, ), and black mustard (, ).
View Article and Find Full Text PDFJ Chem Phys
January 2025
CNRS, Laboratoire PHENIX (Physicochimie des Electrolytes et Nanosystèmes Interfaciaux), Sorbonne Université, 4 Place Jussieu, 75005 Paris, France.
By means of a minimal physical model, we investigate the interplay of two phase transitions at play in chromatin organization: (1) liquid-liquid phase separation within the fluid solvating chromatin, resulting in the formation of biocondensates; and (2) the coil-globule crossover of the chromatin fiber, which drives the condensation or extension of the chain. In our model, a species representing a domain of chromatin is embedded in a binary fluid. This fluid phase separates to form a droplet rich in a macromolecule (B).
View Article and Find Full Text PDFArch Microbiol
January 2025
Infectious Diseases Research Center (IDRC), Arak University of Medical Sciences, Arak, Iran.
Infertility can harm a patient in physical, psychological, spiritual, and medical ways. This illness is unusual because it affects the patient's companion and the patient individually. Infertility is a multifactorial disease, and various etiological factors like infection are known to develop this disorder.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!