The chemical diversity of Zanthoxylum zanthoxyloides growing wild in Senegal was studied according to volatile compound classes, plant organs and sample locations. The composition of fruit essential oil was investigated using an original targeted approach based on the combination of gas chromatography (GC) and liquid chromatography (LC) both coupled with mass spectrometry (MS). The volatile composition of Z. zanthoxyloides fruits exhibited relative high amounts of hydrocarbon monoterpenes (24.3 - 55.8%) and non-terpenic oxygenated compounds (34.5 - 63.1%). The main components were (E)-β-ocimene (12.1 - 39%), octyl acetate (11.6 - 21.8%) and decanol (9.7 - 15.4%). The GC and GC/MS profiling of fruit essential oils showed a chemical variability according to geographical locations of plant material. The LC/MS/MS analysis of fruit oils allowed the detection of seven coumarins in trace content. The chemical composition of fruit essential oils was compared with volatile fractions of leaves and barks (root and trunk) from the same plant station. Hexadecanoic acid, germacrene D and decanal were identified as the major constituents of leaves whereas the barks (root and trunk) were dominated by pellitorine (85.8% and 57%, respectively), an atypic linear compound with amide group. The fruit essential oil exhibited interesting antimicrobial activities against Staphylococcus aureus and Candida albicans, particularly the alcohol fraction of the oil.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbdv.201600125DOI Listing

Publication Analysis

Top Keywords

fruit essential
16
chemical diversity
8
zanthoxylum zanthoxyloides
8
compound classes
8
classes plant
8
plant organs
8
sample locations
8
composition fruit
8
essential oil
8
essential oils
8

Similar Publications

Impacts of planting structure adjustment on water saving in the Shiyang River Basin of Arid Region.

Sci Rep

December 2024

College of Geography and Environment Science, Northwest Normal University, 967 Anning East Road, Lanzhou, 730070, Gansu, China.

Planting structure adjustment (PSA) affects agricultural water saving, and is an essential part of water-saving agricultural construction. This study introduced virtual water theory and innovatively constructed a model to assess the water-saving effects of PSA in Shiyang River Basin over the past 38 years, explore the relationship between planting structure and water saving, and clarify the most water-saving planting structure. The results showed that the sown area of economic crops consistently increased as food crop areas decreased in the four counties (districts) from 1980 to 2017.

View Article and Find Full Text PDF

Characterization of Endofungal Bacteria and Their Role in the Ectomycorrhizal Fungus .

J Fungi (Basel)

December 2024

State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.

, an ectomycorrhizal fungus, forms a symbiotic relationship with , a rare and endangered species crucial to desert riparian ecosystems. In this study, endofungal bacteria (EFBs) within the fruiting bodies of were confirmed by a polyphasic approach, including genomic sequencing, real-time quantitative PCR targeting the 16S rRNA gene, full-length and next-generation sequencing (NGS) of the 16S rRNA gene, and culture methods. The genera , , , and were abundant in the EFBs of fruiting bodies associated with three hosts and were consistently present across different developmental stages.

View Article and Find Full Text PDF

Unlocking the role of silicon against biotic stress in plants.

Front Plant Sci

December 2024

Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, Guangxi, China.

The requirement for agricultural crops continues to enhance with the continuous growth of the human population globally. Plant pathogenic diseases outbreaks are enhancing and threatening food security and safety for the vulnerable in different regions worldwide. Silicon (Si) is considered a non-essential element for plant growth.

View Article and Find Full Text PDF

Neofusicoccum parvum is one of the most hazardous pathogens causing mango fruit decay. The present study utilized trans-2-hexenal (TH), a typical antifungal component of plant essential oils (EOs), to control N. parvum both in vivo and in vitro, and attempted to explore the mechanisms involved.

View Article and Find Full Text PDF

Diabetes mellitus is a chronic metabolic disorder that can cause elevated blood glucose levels due to impaired insulin secretion or resistance. Different parts of have been used widely in traditional medicine to treat many disorders. The present study aims to evaluate the antidiabetic ability of the corm, pseudostem, inflorescence, fruit, peel, and seed of via in vitro experiments by inhibiting α-amylase and α-glucosidase enzymes as well as in vivo models on diabetic alloxan-induced mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!