Bioengineering holds great promise to provide fast and efficient biocatalysts for methanol-based biotechnology, but necessitates proven methods to optimize physiology in engineered strains. Here, we highlight experimental evolution as an effective means for optimizing an engineered Methylobacterium extorquens AM1. Replacement of the native formaldehyde oxidation pathway with a functional analog substantially decreased growth in an engineered Methylobacterium, but growth rapidly recovered after six hundred generations of evolution on methanol. We used whole-genome sequencing to identify the basis of adaptation in eight replicate evolved strains, and examined genomic changes in light of other growth and physiological data. We observed great variety in the numbers and types of mutations that occurred, including instances of parallel mutations at targets that may have been "rationalized" by the bioengineer, plus other "illogical" mutations that demonstrate the ability of evolution to expose unforeseen optimization solutions. Notably, we investigated mutations to RNA polymerase, which provided a massive growth benefit but are linked to highly aberrant transcriptional profiles. Overall, we highlight the power of experimental evolution to present genetic and physiological solutions for strain optimization, particularly in systems where the challenges of engineering are too many or too difficult to overcome via traditional engineering methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5023240 | PMC |
http://dx.doi.org/10.3390/microorganisms3020152 | DOI Listing |
Microb Cell Fact
December 2024
Fraunhofer Institute for Interfacial Engineering and Biotechnology, Straubing Branch BioCat, Schulgasse 11a, Straubing, Germany.
The conversion of CO into methanol depicts one of the most promising emerging renewable routes for the chemical and biotech industry. Under this regard, native methylotrophs have a large potential for converting methanol into value-added products but require targeted engineering approaches to enhance their performances and to widen their product spectrum. Here we use a systems-based approach to analyze and engineer M.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2024
Department of Chemistry, The Pennsylvania State University, University Park, PA 16802.
Elucidating details of biology's selective uptake and trafficking of rare earth elements, particularly the lanthanides, has the potential to inspire sustainable biomolecular separations of these essential metals for myriad modern technologies. Here, we biochemically and structurally characterize () LanD, a periplasmic protein from a bacterial gene cluster for lanthanide uptake. This protein provides only four ligands at its surface-exposed lanthanide-binding site, allowing for metal-centered protein dimerization that favors the largest lanthanide, La.
View Article and Find Full Text PDFRSC Adv
October 2024
Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University Hangzhou 310012 China
Proc Natl Acad Sci U S A
August 2024
Center for Biophysics and Quantitative Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801.
The 2011 discovery of the first rare earth-dependent enzyme in methylotrophic AM1 prompted intensive research toward understanding the unique chemistry at play in these systems. This enzyme, an alcohol dehydrogenase (ADH), features a La ion closely associated with redox-active coenzyme pyrroloquinoline quinone (PQQ) and is structurally homologous to the Ca-dependent ADH from the same organism. AM1 also produces a periplasmic PQQ-binding protein, PqqT, which we have now structurally characterized to 1.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2024
Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720.
Many bacteria secrete metallophores, low-molecular-weight organic compounds that bind ions with high selectivity and affinity, in order to access essential metals from the environment. Previous work has elucidated the structures and biosynthetic machinery of metallophores specific for iron, zinc, nickel, molybdenum, and copper. No physiologically relevant lanthanide-binding metallophore has been discovered despite the knowledge that lanthanide metals (Ln) have been revealed to be essential cofactors for certain alcohol dehydrogenases across a diverse range of phyla.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!