Interactions of Methylotrophs with Plants and Other Heterotrophic Bacteria.

Microorganisms

Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan.

Published: April 2015

Methylotrophs, which can utilize methane and/or methanol as sole carbon and energy sources, are key players in the carbon cycle between methane and CO₂, the two most important greenhouse gases. This review describes the relationships between methylotrophs and plants, and between methanotrophs (methane-utilizers, a subset of methylotrophs) and heterotrophic bacteria. Some plants emit methane and methanol from their leaves, and provide methylotrophs with habitats. Methanol-utilizing methylotrophs in the genus Methylobacterium are abundant in the phyllosphere and have the ability to promote the growth of some plants. Methanotrophs also inhabit the phyllosphere, and methanotrophs with high methane oxidation activities have been found on aquatic plants. Both plant and environmental factors are involved in shaping the methylotroph community on plants. Methanotrophic activity can be enhanced by heterotrophic bacteria that provide growth factors (e.g., cobalamin). Information regarding the biological interaction of methylotrophs with other organisms will facilitate a better understanding of the carbon cycle that is driven by methylotrophs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5023238PMC
http://dx.doi.org/10.3390/microorganisms3020137DOI Listing

Publication Analysis

Top Keywords

heterotrophic bacteria
12
methylotrophs plants
8
carbon cycle
8
plants methanotrophs
8
methylotrophs
7
plants
6
interactions methylotrophs
4
plants heterotrophic
4
bacteria methylotrophs
4
methylotrophs utilize
4

Similar Publications

Overlooked tripartite microbial interactions influencing chemical cycling in the ocean.

Trends Microbiol

January 2025

Climate Change Cluster (C3), University of Technology Sydney, Sydney, New South Wales 2007, Australia; UAR 3278 CRIOBE, PSL Université Paris: EPHE-UPVD-CNRS, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, France. Electronic address:

Inter-microbial interactions fundamentally govern ocean ecology and biogeochemistry. Recently, Henshaw and colleagues revealed that important inter-bacterial associations in the ocean can be shaped by viral infections, whereby infected cyanobacteria release specific chemicals that attract heterotrophic bacteria, uncovering a new tripartite microbial interaction that influences carbon transfer in the surface ocean.

View Article and Find Full Text PDF

Water treatment technologies have received great attention recently, as water is the most important nutritional element, and animals consume it daily in larger quantities than those of food. The ideal water treatment affects the chemical composition and physical properties of water, having a significant positive impact on the animal's physiology, productivity, and welfare. Studies conducted on water ionization devices for broiler chickens remain limited; therefore, this study was planned to investigate the effect of ionized drinking water on the productive performance, physiological status, and carcass characteristics of broiler chicks.

View Article and Find Full Text PDF

Insight into enhanced adaptability of iron-carbon biofilter in treating low-carbon nitrogen mariculture wastewater for nitrogen removal and carbon reduction.

Bioresour Technol

January 2025

Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044 China. Electronic address:

Iron-carbon (Fe-C) based biofilters have shown significant advantages in treating mariculture wastewater by facilitating the mixotrophic heterotrophic nitrification-aerobic denitrification (HNAD) process. However, the effects of Fe-C materials and varying carbon-to-nitrogen (C/N) ratios on N removal and C reduction performance remain insufficiently explored. This study demonstrated that the Fe-C biofilter (R-Fe) achieved significantly higher NO-N removal efficiency (65.

View Article and Find Full Text PDF

Relationship assessment of microbial community and cometabolic consumption of 2-chlorophenol.

Appl Microbiol Biotechnol

January 2025

Department of Biotechnology, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Iztapalapa, CDMX, Mexico City, Mexico.

The relationship of microbial community and cometabolic consumption of 2-chlorophenol (2-CP) in a nitrifying sequencing batch reactor (SBR) was studied. The assessment of the population dynamics of the nitrifying sludge during the cometabolic 2-CP consumption with increasing ammonium (NH) concentrations in the SBR showed the presence of 39 different species of which 10 were always present in all cycles. Fifty-five percent of the species found were grouped as Proteobacteria (45% as β-proteobacteria and 10% as γ-proteobacteria class), 30% as Acidobacteria, and 15% as Deinococcus-Thermus phyla.

View Article and Find Full Text PDF

The addition of acetic acid to cultures is usually used to inhibit the growth of heterotrophic bacteria; however, we found that acetic acid also promotes the growth of CICC41233, as well as the synthesis of pigments (MPs). Compared with no acetic acid or HCl addition, the diameter of CICC41233 colonies increased significantly under acetic acid conditions. On the sixth day of fermentation, the yield of total pigments in increased significantly by 9.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!