Neisseria gonorrhoeae is capable of causing gonorrhoea and more complex diseases in the human host. Neisseria meningitidis is a closely related pathogen that shares many of the same genomic features and virulence factors, but causes the life threatening diseases meningococcal meningitis and septicaemia. The importance of non-coding RNAs in gene regulation has become increasingly evident having been demonstrated to be involved in regulons responsible for iron acquisition, antigenic variation, and virulence. Neisseria spp. contain an IS-like element, the Correia Repeat Enclosed Element, which has been predicted to be mobile within the genomes or to have been in the past. This repeat, present in over 100 copies in the genome, has the ability to alter gene expression and regulation in several ways. We reveal here that Correia Repeat Enclosed Elements tend to be near non-coding RNAs in the Neisseria spp., especially N. gonorrhoeae. These results suggest that Correia Repeat Enclosed Elements may have disrupted ancestral regulatory networks not just through their influence on regulatory proteins but also for non-coding RNAs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5039591 | PMC |
http://dx.doi.org/10.3390/microorganisms4030031 | DOI Listing |
Sci Rep
January 2025
Division of Anaesthesia, University of Cambridge, Cambridge, UK.
Practices for controlling intracranial pressure (ICP) in traumatic brain injury (TBI) patients admitted to the intensive care unit (ICU) vary considerably between centres. To help understand the rational basis for such variance in care, this study aims to identify the patient-level predictors of changes in ICP management. We extracted all heterogeneous data (2008 pre-ICU and ICU variables) collected from a prospective cohort (n = 844, 51 ICUs) of ICP-monitored TBI patients in the Collaborative European NeuroTrauma Effectiveness Research in TBI study.
View Article and Find Full Text PDFNucleic Acids Res
December 2024
Institute of Pharmacy and Molecular Biotechnology (IPMB), Faculty of Engineering Sciences, Heidelberg University, Heidelberg 69120, Germany.
Deep mutational scanning is a powerful method for exploring the mutational fitness landscape of proteins. Its adaptation to anti-CRISPR proteins, which are natural CRISPR-Cas inhibitors and key players in the co-evolution of microbes and phages, facilitates their characterization and optimization. Here, we developed a robust anti-CRISPR deep mutational scanning pipeline in Escherichia coli that combines synthetic gene circuits based on CRISPR interference with flow cytometry coupled sequencing and mathematical modeling.
View Article and Find Full Text PDFFront Fungal Biol
October 2024
LGMM, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, Brazil.
is the etiological agent of anthracnose disease in common bean ( L.), noted for its ability to cause serious damage and significant pathogenic variability. This study reveals the features of the high-quality genome of .
View Article and Find Full Text PDFJ Int Neuropsychol Soc
October 2024
Center for Healthy Aging, Penn State University, University Park, PA, USA.
Objective: The psychometric rigor of unsupervised, smartphone-based assessments and factors that impact remote protocol engagement is critical to evaluate prior to the use of such methods in clinical contexts. We evaluated the validity of a high-frequency, smartphone-based cognitive assessment protocol, including examining convergence and divergence with standard cognitive tests, and investigating factors that may impact adherence and performance (i.e.
View Article and Find Full Text PDFHum Gene Ther
October 2024
Oswaldo Cruz Foundation (FIOCRUZ), National Institute of Women, Children and Adolescents' Health Fernandes Figueira (IFF), Rio de Janeiro, Brazil.
The advent of clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated nuclease 9 (Cas9) technology has revolutionized the field of genetic engineering, offering unprecedented potential for the targeted manipulation of DNA sequences. Advances in the mechanism of action of the CRISPR-Cas9 system allowed potential applicability for the treatment of genetic diseases. CRISPR-Cas9's mechanism of action involves the use of an RNA guide molecule to target-specific DNA sequences and the Cas9 enzyme to induce precise DNA cleavage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!