Vibration fatigue failure is a critical problem of hydraulic pipes under severe working conditions. Strain modal testing of small and light pipes is a good option for dynamic characteristic evaluation, structural health monitoring and damage identification. Unique features such as small size, light weight, and high multiplexing capability enable Fibre Bragg Grating (FBG) sensors to measure structural dynamic responses where sensor size and placement are critical. In this paper, experimental strain modal analysis of pipes using distributed FBG sensors ispresented. Strain modal analysis and parameter identification methods are introduced. Experimental strain modal testing and finite element analysis for a cantilever pipe have been carried out. The analysis results indicate that the natural frequencies and strain mode shapes of the tested pipe acquired by FBG sensors are in good agreement with the results obtained by a reference accelerometer and simulation outputs. The strain modal parameters of a hydraulic pipe were obtained by the proposed strain modal testing method. FBG sensors have been shown to be useful in the experimental strain modal analysis of small and light pipes in mechanical, aeronautic and aerospace applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5087372PMC
http://dx.doi.org/10.3390/s16101583DOI Listing

Publication Analysis

Top Keywords

strain modal
32
modal analysis
16
fbg sensors
16
small light
12
light pipes
12
modal testing
12
experimental strain
12
strain
9
analysis small
8
pipes distributed
8

Similar Publications

Permeable, Stretchable, and Recyclable Cellulose Aerogel On-Skin Electronics for Dual-Modal Sensing and Personal Healthcare.

ACS Nano

January 2025

CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, PR China.

Flexible on-skin electronics present tremendous popularity in intelligent electronic skins (e-skins), healthcare monitoring, and human-machine interfaces. However, the reported e-skins can hardly provide high permeability, good stretchability, and large sensitivity and are limited in long-term stability and efficient recyclability when worn on the human body. Herein, inspired from the human skin, a permeable, stretchable, and recyclable cellulose aerogel-based electronic system is developed by sandwiching a screen-printed silver sensing layer between a biocompatible CNF/HPC/PVA (cellulose nanofiber/hydroxypropyl cellulose/poly(vinyl alcohol)) aerogel hypodermis layer and a permeable polyurethane layer as the epidermis layer.

View Article and Find Full Text PDF

The effects of mechanical vibrations on control system stability could be significant in control systems designed on the assumption of rigid-body dynamics, such as launch vehicles. Vibrational loads can also cause damage to launch vehicles due to fatigue or excitation of structural resonances. This paper investigates a method to control structural vibrations in real time using a finite number of strain measurements from a fiber Bragg grating (FBG) sensor array.

View Article and Find Full Text PDF

Intrinsic Anti-Freezing, Tough, and Transparent Hydrogels for Smart Optical and Multi-Modal Sensing Applications.

Adv Mater

January 2025

Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China.

Hydrogels have received great attention due to their molecular designability and wide application range. However, they are prone to freeze at low temperatures due to the existence of mass water molecules, which can damage their flexibility and transparency, greatly limiting their use in cold environments. Although adding cryoprotectants can reduce the freezing point of hydrogels, it may also deteriorate the mechanical properties and face the risk of cryoprotectant leakage.

View Article and Find Full Text PDF
Article Synopsis
  • This study introduces a new Bayesian method for identifying structural damage using a technique called Improved Elemental Modal Strain Energy Ratio (IEMSER) to create a more focused prior distribution.
  • The approach uses measured frequencies and mode shapes to develop the IEMSER indicator, which informs damage assessment and guides the Markov Chain Monte Carlo (MCMC) sampling to find accurate damage estimates.
  • Results from numerical tests on a steel truss bridge and modal data from an 18-story frame structure demonstrate that this method enhances the accuracy of damage identification by effectively utilizing prior information.
View Article and Find Full Text PDF

Background: Extrapulmonary tuberculosis (EP-TB) constitutes one-fifth of all tuberculosis (TB) cases. EP-TB mimics common infections which pose diagnostic dilemma, requires extensive diagnostics that culminate into therapeutic delay often resulting in irrational and empirical institution of antitubercular therapy (ATT) in challenging cases. This supplemented by poor treatment compliance resulted in emergence of Drug-resistant (DR) strains of EP-TB which further impedes the path to recovery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!