This study places constraints on the source and transport mechanisms of methane found in groundwater within the Barnett Shale footprint in Texas using dissolved noble gases, with particular emphasis on Kr and Xe. Dissolved methane concentrations are positively correlated with crustal He, Ne, and Ar and suggest that noble gases and methane originate from common sedimentary strata, likely the Strawn Group. In contrast to most samples, four water wells with the highest dissolved methane concentrations unequivocally show strong depletion of all atmospheric noble gases (Ne, Ar, Kr, Xe) with respect to air-saturated water (ASW). This is consistent with predicted noble gas concentrations in a water phase in contact with a gas phase with initial ASW composition at 18 °C-25 °C and it suggests an in situ, highly localized gas source. All of these four water wells tap into the Strawn Group and it is likely that small gas accumulations known to be present in the shallow subsurface were reached. Additionally, lack of correlation of Kr/Ar and Xe/Ar fractionation levels along with He/Ne with distance to the nearest gas production wells does not support the notion that methane present in these groundwaters migrated from nearby production wells either conventional or using hydraulic fracturing techniques.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.6b01494DOI Listing

Publication Analysis

Top Keywords

noble gases
12
noble gas
8
dissolved methane
8
methane concentrations
8
strawn group
8
water wells
8
production wells
8
methane
6
gas
6
noble
5

Similar Publications

Radon (Rn) and thoron (Rn) were reported as the highest contributors to natural radiation received by humans. Furthermore, radon has been stated as the second-highest cause of lung cancer. The concentrations of U and Th (the parent nuclide of radon and thoron, respectively) in nature vary with geological conditions and can be enhanced by human activities.

View Article and Find Full Text PDF

Assessment of radon level and the associated radiological risk from soil samples of quarry area at Hakim Gara, Ethiopia.

Environ Monit Assess

December 2024

School of Nuclear and Allied Sciences, University of Ghana, Atomic Campus, P.O. Box LG 80 Legon, Accra, Ghana.

Excavation of terrestrial surface of the Earth could enhance the chance of exposure to radon while gases in the underground get access to escape. This study was aimed to assess the level of radon concentration from soil samples of quarrying sites at Hakim Gara in Ethiopia using CR-39 detectors in sealed container technique. The results of the measured radon concentration level were ranging from 164.

View Article and Find Full Text PDF

Objective: assessment of probable exposure levels from radon and NORM in workplaces within the context of justi fying radiation protection plans in an existing exposure situation.

Materials And Methods: Materials regarding the assessment of naturally occurring radioactive material (NORM) con tent in tailing from mining and processing industries in Ukraine and assessments of contamination levels of industri al sites of oil and gas enterprises were used for estimating the probable range of effective doses (ED) of workers fromNORM at industrial enterprises. These materials were obtained as a result of research conducted by specialists from theRadiation Protection Laboratory of the State Institution «O.

View Article and Find Full Text PDF

Cryogenic TOF-SIMS Around Sublimation Temperature of Quench-Condensed Noble Gas (Ne, Ar, and Kr) Films.

J Mass Spectrom

January 2025

Research Center for Energy and Environmental Materials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan.

A possible TOF-SIMS analysis of surface phase transitions has recently been proposed for limited cases such as polymers and ionic liquids. In the present study, we have extended this analysis to quench-condensed noble gas films. The newly developed cryogenic TOF-SIMS allowed both measurements of TOF-SIMS below 4 K, and low-energy ion scattering spectroscopy that is used to prepare a clean surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!