Study of the antimicrobial and antifouling properties of different oxide surfaces.

Environ Sci Pollut Res Int

Laboratoire d'Ingénierie des MATériaux de Bretagne (LIMATB-EA 4250), Université de Bretagne Sud, Lorient, France.

Published: April 2017

Membrane separation processes find applications in an array of fields as they use far less energy and chemical agents than competing processes. However, a major drawback of membrane technology is that biofilm formation alters membrane performances. Preventing biofilm formation is thus a pivotal challenge for larger-scale development of membrane processes. Here, we studied the comparative antibacterial activities of different inorganic membranes (ceramic and zeolite-coated ceramic with or without copper exchange) using several bacterial strains (Escherichia coli, Staphylococcus aureus, and Bacillus subtilis). In static conditions, alumina plates coated with Cu-exchanged zeolite showed significant bactericidal activity. In dynamic mode (circulation of a contaminated nutrient medium), there was no observable bacterial adhesion at the surface of the Cu-exchanged material. These results confirm the antifouling properties of the Cu-mordenite layer due to both the increased hydrophilicity and antibacterial properties of the active layer.Tests performed with tubular filtration membranes (without copper exchange) showed a significant decline in membrane hydraulic properties during filtration of culture media containing bacteria, whereas copper-exchanged membranes showed no decline in hydraulic permeability. Filtration tests performed with concentrated culture media containing spores of B. subtilis led to a significant decrease in membrane hydraulic permeabilities (but less so with Cu-exchanged membranes). The surfaces showed less effective global antifouling properties during the filtration of a concentrated culture medium due to competition between bacterial growth and the bactericidal effect of copper. Analyses of copper leached in solution show that after a conditioning step, the amount of copper released is negligible.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-016-7762-2DOI Listing

Publication Analysis

Top Keywords

antifouling properties
12
biofilm formation
8
copper exchange
8
membrane hydraulic
8
properties filtration
8
culture media
8
concentrated culture
8
membrane
6
properties
5
copper
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!