Miro phosphorylation sites regulate Parkin recruitment and mitochondrial motility.

Proc Natl Acad Sci U S A

F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115; Department of Neurobiology, Harvard Medical School, Harvard University, Cambridge, MA 02138;

Published: October 2016

The PTEN-induced putative kinase 1 (PINK1)/Parkin pathway can tag damaged mitochondria and trigger their degradation by mitophagy. Before the onset of mitophagy, the pathway blocks mitochondrial motility by causing Miro degradation. PINK1 activates Parkin by phosphorylating both Parkin and ubiquitin. PINK1, however, has other mitochondrial substrates, including Miro (also called RhoT1 and -2), although the significance of those substrates is less clear. We show that mimicking PINK1 phosphorylation of Miro on S156 promoted the interaction of Parkin with Miro, stimulated Miro ubiquitination and degradation, recruited Parkin to the mitochondria, and via Parkin arrested axonal transport of mitochondria. Although Miro S156E promoted Parkin recruitment it was insufficient to trigger mitophagy in the absence of broader PINK1 action. In contrast, mimicking phosphorylation of Miro on T298/T299 inhibited PINK1-induced Miro ubiquitination, Parkin recruitment, and Parkin-dependent mitochondrial arrest. The effects of the T298E/T299E phosphomimetic were dominant over S156E substitution. We propose that the status of Miro phosphorylation influences the decision to undergo Parkin-dependent mitochondrial arrest, which, in the context of PINK1 action on other substrates, can restrict mitochondrial dynamics before mitophagy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5068282PMC
http://dx.doi.org/10.1073/pnas.1612283113DOI Listing

Publication Analysis

Top Keywords

parkin recruitment
12
miro
10
miro phosphorylation
8
parkin
8
mitochondrial motility
8
phosphorylation miro
8
miro ubiquitination
8
pink1 action
8
parkin-dependent mitochondrial
8
mitochondrial arrest
8

Similar Publications

Hepatitis C Virus NS5A Activates Mitophagy Through Cargo Receptor and Phagophore Formation.

Pathogens

December 2024

Department of Biochemistry & Molecular Biology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.

Chronic HCV infection is a risk factor for end-stage liver disease, leading to a major burden on public health. Mitophagy is a specific form of selective autophagy that eliminates mitochondria to maintain mitochondrial integrity. HCV NS5A is a multifunctional protein that regulates the HCV life cycle and may induce host mitophagy.

View Article and Find Full Text PDF

Bone defect repair remains a great challenge in the field of orthopedics. Human body essential trace element such as copper is essential for bone regeneration, but how to use it in bone defects and the underlying its mechanisms of promoting bone formation need to be further explored. In this study, by doping copper into mesoporous bioactive glass nanoparticles (Cu-MBGNs), we unveil a previously unidentified role of copper in facilitating osteoblast mitophagy and mitochondrial dynamics, which enhance amorphous calcium phosphate (ACP) release and subsequent biomineralization, ultimately accelerating the process of bone regeneration.

View Article and Find Full Text PDF

Chemoresistance is an important factor in multiple myeloma (MM) relapse and overall survival. However, the mechanism underlying resistance remains unclear. In this study, we identified adenine nucleotide translocase 3 (ANT3) as a novel biomarker and therapeutic target for MM progression and resistance to the proteasome inhibitor bortezomib (BTZ).

View Article and Find Full Text PDF

Association between mitophagy and inflammasome in uric acid nephropathy.

Ren Fail

December 2024

Department of Nephrology, Nantong Hospital to Nanjing University of Chinese Medicine, Nantong Hospital of Traditional Chinese Medicine, Nantong, Jiangsu, China.

Objective: This study was recruited to investigate the role of mitophagy in activating NLRP3 inflammasome in the kidney of uric acid (UA) nephropathy (UAN) rats.

Methods: This study developed a uric acid nephropathy (UAN) rat model divided into five groups: Negative control (NC), UAN model (M), UAN + autophagy inhibitor (3-MA), UAN + lysosome inhibitor (CQ), and ROS scavenger (N-acetylcysteine, N). H&E staining assessed renal structure, ROS levels were measured with 2, 7dichlorofluorescin diacetate, and ELISA measured serum markers (, , cystatin , , , ).

View Article and Find Full Text PDF

Phosphorylation of Optineurin by protein kinase D regulates Parkin-dependent mitophagy.

iScience

December 2024

Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, Sorbonne Université UMRS CR7 - Inserm U1135 - CNRS EMR8255, Faculté de Santé, 91 Boulevard de l'Hôpital, F-75013 Paris, France.

Degradation of damaged mitochondria, a process called mitophagy, plays a role in mitochondrial quality control and its dysfunction has been linked to neurodegenerative pathologies. The PINK1 kinase and the ubiquitin ligase Parkin-mediated mitophagy represents the most common pathway in which specific receptors, including Optineurin (Optn), target ubiquitin-labeled mitochondria to autophagosomes. Here, we show that Protein Kinases D (PKD) are activated and recruited to damaged mitochondria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!