Somatosensory Evoked Potentials (SEPs) and Somatosensory Evoked magnetic Fields (SEFs) to median nerve stimulation at wrist were recorded in 5 healthy subjects and the components between 15 and 30 ms after the stimulus were evaluated on the hemiscalp contralateral to the stimulated wrist. SEPs were measured by means of a 32-channel recorder and compared with SEFs obtained via multiple measurements with a 4-channel sensor. Equivalent dipole localization was carried out for the magnetic components peaking at about 15, 20 and 24 ms. The scalp distribution of SEPs, illustrated by bit mapped color images, were qualitatively explained by three separate sources. The first is described as a tangentially oriented dipole placed behind the Central Sulcus and responsible for the parietal N20-"late P25" waves and for the frontal P20-N30 ones. The second is represented by a radieal dipole placed just in front of the Central Sulcus and pointing towards the motor strip, responsible for the rolandic P22 component. The third is just behind the Central Sulcus and is radieally oriented towards the surface of the postcentral sensory area for the "early P25" parietal wave. The SEFs distributions, illustrated by color isofield contour maps, were quantitatively explained by a unique tangential dipole localized, with good resolution, well behind the Sulcus for the 15 ms waves and slightly frontal to this site for the waves peaking at around 20 and 24 ms. The equivalent dipole has been localized at a depth of about 5 cm (15 ms component), 2 cm (20 ms components) and 4 cm (24 ms component), across the studied subjects. It is stressed that the dipole responsible for the magnetic pattern is likely to be the same tangential dipole responsible for a part of the electric pattern. Due to their radieal orientation, the other two dipoles, proposed for the SEPs maps, would be mostly undetectable by a magnetic investigation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/00207458908991617 | DOI Listing |
Neural Plast
January 2025
Department of Rehabilitation Medicine, School of Medicine, Tokai University, Kanagawa, Japan.
To demonstrate the utility of somatosensory evoked potentials (SEPs) following median nerve stimulation for chronological assessment of sensory function in patients with subacute stroke during rehabilitation. Retrospective study. Forty-seven patients with hemiparesis due to stroke during the subacute phase.
View Article and Find Full Text PDFJ Biomed Opt
January 2025
TU Dresden, Carl Gustav Carus Faculty of Medicine, Anesthesiology and Intensive Care Medicine, Clinical Sensing and Monitoring, Dresden, Germany.
Significance: The precise identification and preservation of functional brain areas during neurosurgery are crucial for optimizing surgical outcomes and minimizing postoperative deficits. Intraoperative imaging plays a vital role in this context, offering insights that guide surgeons in protecting critical cortical regions.
Aim: We aim to evaluate and compare the efficacy of intraoperative thermal imaging (ITI) and intraoperative optical imaging (IOI) in detecting the primary somatosensory cortex, providing a detailed assessment of their potential integration into surgical practice.
Eur Spine J
January 2025
Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
Background: Posterior laminectomy is a standard treatment for thoracic ossification of the ligamentum flavum (TOLF), but it often leads to neurological deterioration during surgery. This study aimed to reduce iatrogenic neurological deterioration by using an S8 navigation system combined with an ultrasonic osteotome for three-dimensional real-time dynamic visualization decompression.
Methods: A retrospective analysis was conducted on patients who underwent laminectomy and internal fixation for TOLF in our centre from January 2016 to January 2023.
Science
January 2025
Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA.
Intracortical microstimulation (ICMS) of somatosensory cortex evokes tactile sensations whose properties can be systematically manipulated by varying stimulation parameters. However, ICMS currently provides an imperfect sense of touch, limiting manual dexterity and tactile experience. Leveraging our understanding of how tactile features are encoded in the primary somatosensory cortex (S1), we sought to inform individuals with paralysis about local geometry and apparent motion of objects on their skin.
View Article and Find Full Text PDFEpilepsia
January 2025
Department of Medical Sciences, Institute of Neurology, Magna Græcia University, Catanzaro, Italy.
We aim to understand whether tremor may be an intrinsic feature of juvenile myoclonic epilepsy (JME) and whether individuals with JME plus tremor experience a different disease course. Thirty-one individuals with JME plus tremor (17 females, mean age = 33.9 ± 13.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!