Fusobacterium nucleatum (F. nucleatum, Fn) is associated with the colorectal cancer (CRC). Fn-infection could induce significant levels of serum Fn-specific antibodies in human and mice. The objective of this study was to identify Fn-infection that elicit a humoral response in patients with CRC and evaluate the diagnostic performance of serum anti-Fn antibodies. In this work, we showed the mean absorbance value of anti-Fn-IgA and -IgG in the CRC group were significantly higher than those in the benign colon disease group and healthy control group (P < 0.001). The sensitivity and specificity of ELISA for the detection of anti-Fn-IgA were 36.43% and 92.71% based on the optimal cut-off. The combination of anti-Fn-IgA and carcino-embryonic antigen (CEA) was better for diagnosing CRC (Sen: 53.10%, Spe: 96.41%; AUC = 0.848). Furthermore, combining anti-Fn-IgA with CEA and carbohydrate antigen 19-9 (CA19-9) (Sen: 40.00%, Spe: 94.22%; AUC = 0.743) had the better ability to classify CRC patients with stages I-II. These results suggested that Fn-infection elicited high level of serum anti-Fn antibodies in CRC patients, and serum anti-Fn-IgA level may be a potential diagnosing biomarker for CRC. Serum anti-Fn-IgA in combination with CEA and CA19-9 increases the sensitivity of detecting early CRC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5039407 | PMC |
http://dx.doi.org/10.1038/srep33440 | DOI Listing |
Nat Microbiol
January 2025
Harvard T.H. Chan School of Public Health, Boston, MA, USA.
Lateral gene transfer (LGT), also known as horizontal gene transfer, facilitates genomic diversification in microbial populations. While previous work has surveyed LGT in human-associated microbial isolate genomes, the landscape of LGT arising in personal microbiomes is not well understood, as there are no widely adopted methods to characterize LGT from complex communities. Here we developed, benchmarked and validated a computational algorithm (WAAFLE or Workflow to Annotate Assemblies and Find LGT Events) to profile LGT from assembled metagenomes.
View Article and Find Full Text PDFMol Biol Res Commun
January 2025
Clinical Genetics Lab, Centre for Cellular and Molecular Research, Saveetha Dental College & Hospital, Saveetha Institute of Medical and Technical Sciences [SIMATS], Saveetha University, Chennai, India.
The present study aims to identify the differentially expressed genes in HIGK treated with and their possible role in establishing head and neck squamous cell carcinoma. The study design follows a computational approach wherein multiple databases and tools are used to derive the possible association between exposure and the development of HNSCC. The GEOmnibus dataset GSE6927 provided data on the differentially expressed genes in the HIGK treated with .
View Article and Find Full Text PDFInt J Oral Sci
January 2025
Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, Universidad de Concepción, Concepción, Chile.
Oral squamous cell carcinoma (OSCC) is the most common manifestation of oral cancer. It has been proposed that periodontal pathogens contribute to OSCC progression, mainly by their virulence factors. However, the main periodontal pathogen and its mechanism to modulate OSCC cells remains not fully understood.
View Article and Find Full Text PDFJ Indian Soc Periodontol
December 2024
Department of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Jakarta Pusat, Indonesia.
is implicated in periodontitis, a chronic inflammatory disease that destroys the periodontal tissue and alveolar bone due to host-microbe dysbiosis. This study focuses on understanding how contributes to bone destruction in periodontitis. The literature search was conducted using PubMed and Scopus databases based on Preferred Reporting Items for Systematic Review and Meta-Analyses guidelines by entering preselected keyword combinations of inclusion and exclusion criteria.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
Approximately 50% of the patients with ulcerative colitis (UC) are primarily nonresponsive to anti-tumor necrosis factor (TNF) therapy or lose their responsiveness over time. The gut microbiota plays an important role in the resistance of UC to anti-TNF therapy; however, the underlying mechanism remains unknown. Here, it is found that the transplantation of gut fecal microbiota from patients with UC alters the diversity of the gut microbiota in dextran sulfate sodium-induced colitis mice and may affect the therapeutic responsiveness of mice to infliximab.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!